首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Derivatives of an E. coli plasmid pKY33 are described having specific insertions or deletions that effect or do not effect the phr gene (for DNA photolyase) carried in this plasmid. The various plasmids are tested to determine which cause an inhibition of UV mutagenesis producing glutamine tRNA ochre suppressor mutations. The inhibition is found to require a functional phr gene, which substantiates our earlier report that amplified DNA photolyase interferes specifically with a category of mutagenesis involving targeting by a pyrimidine dimer.  相似文献   

2.
Y F Li  A Sancar 《Nucleic acids research》1991,19(18):4885-4890
We have cloned the phr gene that encodes DNA photolyase from Salmonella typhimurium by in vivo complementation of Escherichia coli phr gene defect. The S.typhimurium phr gene is 1419 base pairs long and the deduced amino acid sequence has 80% identity with that of E. coli photolyase. We expressed the S.typhimurium phr gene in E.coli by ligating the E.coli trc promoter 5' to the gene, and purified the enzyme to near homogeneity. The apparent molecular weight of S.typhimurium photolyase is 54,000 dalton as determined by SDS-polyacrylamide gel electrophoresis, which is consistent with the calculated molecular weight of 53,932 dalton from the deduced phr gene product. S.typhimurium photolyase is purple-blue in color with near UV-visible absorption peaks at 384, 480, 580, and 625 nm and a fluorescence peak at 470 nm. From the characteristic absorption and fluorescence spectra and reconstitution experiments, S.typhimurium photolyase appears to contain flavin and methenyltetrahydrofolate as chromophore-cofactors as do the E.coli and yeast photolyases. Thus, S.typhimurium protein is the third folate class photolyase to be cloned and characterized to date. The binding constant of S.typhimurium photolyase to thymine dimer in DNA is kD = 1.6 x 10(-9) M, and the quantum yield of photorepair at 384 nm is 0.5.  相似文献   

3.
Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress.  相似文献   

4.
5.
The photolyases, DNA repair enzymes that use visible and long-wavelength UV light to repair cyclobutane pyrimidine dimers (CPDs) created by short-wavelength UV, belong to the larger photolyase-cryptochrome gene family. Cryptochromes (UVA-blue light photoreceptors) lack repair activity, and sensory and regulatory roles have been defined for them in plants and animals. Evolutionary considerations indicate that cryptochromes diverged from CPD photolyases before the emergence of eukaryotes. In prokaryotes and lower eukaryotes, some photolyases might have photosensory functions. phr1 codes for a class I CPD photolyase in Trichoderma atroviride. phr1 is rapidly induced by blue and UVA light, and its photoinduction requires functional blue light regulator (BLR) proteins, which are White Collar homologs in Trichoderma. Here we show that deletion of phr1 abolished photoreactivation of UVC (200 to 280 nm)-inhibited spores and thus that PHR1 is the main component of the photorepair system. The 2-kb 5' upstream region of phr1, with putative light-regulated elements, confers blue light regulation on a reporter gene. To assess phr1 photosensory function, fluence response curves of this light-regulated promoter were tested in null mutant (Deltaphr1) strains. Photoinduction of the phr1 promoter in Deltaphr1 strains was >5-fold more sensitive to light than that in the wild type, whereas in PHR1-overexpressing lines the sensitivity to light increased about 2-fold. Our data suggest that PHR1 may regulate its expression in a light-dependent manner, perhaps through negative modulation of the BLR proteins. This is the first evidence for a regulatory role of photolyase, a role usually attributed to cryptochromes.  相似文献   

6.
Purification of Escherichia coli DNA photolyase   总被引:22,自引:0,他引:22  
Escherichia coli photolyase is a DNA repair enzyme which monomerizes pyrimidine dimers, the major UV photoproducts in DNA, to pyrimidines in a light-dependent reaction. We recently described the construction of a tac-phr plasmid that greatly overproduces the enzyme (Sancar, G. B., Smith, F. W., and Sancar, A. (1983) Nucleic Acids Res. 11, 6667-6678). Using a strain carrying the overproducing plasmid as the starting material, we have developed a purification procedure that yields several milligrams of apparently homogeneous enzyme. The purified protein is a single polypeptide that has an apparent Mr of 49,000 under both denaturing and nondenaturing conditions. The enzyme has no requirement for divalent cations and it restores the biological activity of irradiated DNA only in the presence of photoreactivating light. The purified photolyase has a turnover number of 2.4 dimers/molecule/min; this value agrees well with the in vivo rate of photoreactivation in E. coli.  相似文献   

7.
Sequences of the Escherichia coli photolyase gene and protein   总被引:11,自引:0,他引:11  
We have determined the nucleotide sequence of a 2039-base pair segment of Escherichia coli chromosomal DNA containing the phr gene, which encodes deoxyribopyrimidine photolyase. The coding region of phr is 1416 base pairs and is preceded by regions homologous to consensus sequences for E. coli promoters and ribosome binding sites. The phr gene is preceeded by an open reading frame of 169 codons (orf169) which is transcribed in the same direction. The proximity of orf169 to phr suggests that both are members of a single operon containing one or more internal promoters allowing differential expression of phr. An unusually large number of rare or infrequently used codons are utilized in phr, which may contribute to the low copy number of photolyase. The sequence at the NH2 and COOH termini and the overall amino acid composition of mature photolyase, determined using purified protein, agrees with predictions based upon the nucleotide sequence. Photolyase consists of 471 amino acids and has a calculated molecular weight of 53,994.  相似文献   

8.
A Sancar  C S Rupert 《Gene》1978,4(4):295-308
A new technique is developed for physically enriching recombinant DNA molecules in an in vitro recombination mixture. UV-irradiation of the donor DNA before recombination enables photoreactivating enzyme (PRE) (deoxyribodipyrimidine photolyase, EC 4.1.99.3) to attach to the donor segments in recombinant molecules. This attached protein causes retention of the recombinant molecules on a nitrocellulose filter, while molecules not containing donor DNA pass through. The bound DNA is repaired of its UV damage and released for insertion into cells by exposure to photoreactivating light in situ, yielding approx. 350-fold enrichment. Although applicable to any gene, this procedure has been used in cloning the Escherichia coli phr gene itself, permitting 100-fold amplification of the gene product in vivo.  相似文献   

9.
Recent reports suggest that the selective advantage of bioluminescence for bacteria is mediated by light-dependent stimulation of photolyase to repair DNA lesions. Despite evidence for this model, photolyase mutants have not been characterized in a naturally bioluminescent bacterium, nor has this hypothesis been tested in bioluminescent bacteria under natural conditions. We have now characterized the photolyase encoded by phr in the bioluminescent bacterium Vibrio fischeri ES114. Consistent with Phr possessing photolyase activity, phr conferred light-dependent resistance to UV light. However, upon comparing ES114 to a phr mutant and a dark Delta luxCDABEG mutant, we found that bioluminescence did not detectably affect photolyase-mediated resistance to UV light. Addition of the light-stimulating autoinducer N-3-oxo-hexanoyl homoserine lactone appeared to increase UV resistance, but this was independent of photolyase or bioluminescence. Moreover, although bioluminescence confers an advantage for V. fischeri during colonization of its natural host, Euprymna scolopes, the phr mutant colonized this host to the same level as the wild type. Taken together, our results indicate that at least in V. fischeri strain ES114, the benefits of bioluminescence during symbiotic colonization are not mediated by photolyase, and although some UV resistance mechanism may be coregulated with bioluminescence, we found no evidence that light production benefits cells by stimulating photolyase in this strain.  相似文献   

10.
High-expression plasmids for photolyase (phr) genes from the bacteria Escherichia coli, Anacystis nidulans, Streptomyces griseus and Halobacterium halobium and the yeast Saccharomyces cerevisiae were constructed and introduced into E. coli phr recA cells. As previously reported, al introduced phr genes provided the host cells with photoreactivation-repair activity and the introduced E. coli phr gene rendered the host cells more UV-resistant in the dark. E. coli cells harboring foreign phr genes, however, were found to be more sensitive to UV light in the dark than cells containing the vector plasmid only. These differences in UV sensitivity in the dark disappeared when the host cells had an additional mutation, uvrA, suggesting that the foreign photolyases inhibited the E. coli excision-repair system.  相似文献   

11.
12.
The effect of purified Escherichia coli DNA photolyase on the UV light-induced pyrimidine-pyrimidone (6-4) photoproduct and cyclobutane pyrimidine dimer was investigated in vitro using enzyme purified from cells carrying the cloned phr gene (map position, 15.7 min). Photoproducts were examined both as site-specific lesions in end-labeled DNA and as chromatographically identified products in uniformly labeled DNA. E. coli DNA photolyase removed cyclobutane dimers but had no activity on pyrimidine-pyrimidone (6-4) photoproducts. Photoreactivation can therefore be used to separate the biological effects of these two UV light-induced molecular lesions.  相似文献   

13.
14.
We replaced an Escherichia coli phr gene by a 1.4-kb fragment of DNA coding for resistance to chloramphenicol. Characterization of 2 deletions (phr-19 and phr-36) and 1 insertion (phr-34) in the phr gene revealed no photoreactivation. Photoreactivation-deficient strains of either recA56 or lexA1(ind-) were more sensitive to UV radiation in the dark than phr-proficient counterparts. The presence of the phr defect in uvrA6 strains increased by 1.5-2-fold his-4(Ochre) to His+ mutation induced by ultraviolet light compared to uvrA6 phr+ strains, although there was no difference in UV sensitivity between uvrA6 phr+ and uvrA6 phr- strains. 30-35% of the His+ mutations thus induced were suppressor mutations in uvrA6 phr+ and 49-55% in uvrA6 phr- strains. The UV mutagenesis results are consistent with the previous observations that suppressor mutations targeted by a thymine-cytosine pyrimidine dimer are reduced in the dark in cells with amplified DNA photolyase.  相似文献   

15.
Damage to DNA induced by ultraviolet light can be reversed by a blue light-dependent reaction catalyzed by enzymes called DNA photolyases. Chlamydomonas has been shown to have DNA photolyase activity in both the nucleus and the chloroplast. Here we report the cloning and sequencing of a gene, PHR2, from Chlamydomonas encoding a class II DNA photolyase. The PHR2 protein, when expressed in Escherichia coli, is able to complement a DNA photolyase deficiency. The previously described Chlamydomonas mutant, phr1, which is deficient in nuclear but not chloroplast photolyase activity was shown by RFLP analysis not to be linked to the PHR2 gene. Unlike the recently reported class II DNA photolyase from Arabidopsis, the protein encoded by PHR2 is predicted to contain a chloroplast targeting sequence. This result, together with the RFLP data, suggests that PHR2 encodes the chloroplast targeted DNA photolyase.  相似文献   

16.
Photolyases and blue light receptors belong to a superfamily of flavoproteins that make use of blue and UVA light either to catalyze DNA repair or to control development. We have isolated a DNA photolyase gene (phr1) from Trichoderma harzianum, a common soil fungus that is of interest as a biocontrol agent against soil-borne plant pathogens and as a model for the study of light-dependent development. The sequence of phr1 is similar to other Class I Type I eukaryotic photolyase genes. Low fluences of blue light rapidly induced phr1 expression both in vegetative mycelia, which lack photoprotective pigments, and, to a greater extent, in conidiophores. Thus, visible light induces the development of pigmented, resistant spores as well as the expression of phr1, perhaps announcing in this way the imminent exposure to the more damaging short wavelengths of sunlight. Light induction of phr1 in non-sporulating mutants shows that a complete sporulation pathway is not required for photoregulation. The light requirements for photoinduction of phr1 were not altered in dimY photoperception mutants. This suggests that photoinduction of sporulation and of photolyase expression is distinct in their photoreceptor system or in the transduction of the blue light signal.  相似文献   

17.
18.
DNA photolyase specifically repairs UV light-induced cyclobutane-type pyrimidine dimers in DNA through a light-dependent reaction mechanism. We have obtained photolyase genes from Drosophila melanogaster (fruit fly), Oryzias latipes (killifish) and the marsupial Potorous tridactylis (rat kangaroo), the first photolyase gene cloned from a mammalian species. The deduced amino acid sequences of these higher eukaryote genes show only limited homology with microbial photolyase genes. Together with the previously cloned Carassius auratus (goldfish) gene they form a separate group of photolyase genes. A new classification for photolyases comprising two distantly related groups is proposed. For functional analysis P.tridactylis photolyase was expressed and purified as glutathione S-transferase fusion protein from Escherichia coli cells. The biologically active protein contained FAD as light-absorbing cofactor, a property in common with the microbial class photolyases. Furthermore, we found in the archaebacterium Methanobacterium thermoautotrophicum a gene similar to the higher eukaryote photolyase genes, but we could not obtain evidence for the presence of a homologous gene in the human genome. Our results suggest a divergence of photolyase genes in early evolution.  相似文献   

19.
A new broad-host-range plasmid, pSL1211, was constructed for the over-expression of genes in Synechocystis sp. strain PCC 6803. The plasmid was derived from RSF1010 and an Escherichia coli over-expression plasmid, pTrcHisC. Over-expressed protein is made with a removable N-terminal histidine tag. The plasmid was used to over-express the phrA gene and purify the gene product from Synechocystis sp. strain PCC 6803. PhrA is the major ultraviolet-light-resistant factor in the cyanobacterium. The purified PhrA protein exhibited an optical absorption spectrum similar to that of the cyclobutane pyrimidine dimer (CPD) DNA photolyase from Synechocuccus sp. strain PCC 6301 (Anacystis nidulans). Mass spectrometry analysis of PhrA indicated that the protein contains 8-hydroxy-5-deazariboflavin and flavin adenine dinucleotide (FADH2) as cofactors. PhrA repairs only cyclobutane pyrimidine dimer but not pyrimidine (6-4) pyrimidinone photoproducts. On the basis of these results, the PhrA protein is classified as a class I, HDF-type, CPD DNA photolyase.  相似文献   

20.
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号