首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Of the three divergent regions of ryanodine receptors (RyRs), divergent region 3 (DR3) is the best studied and is believed to be involved in excitation-contraction coupling as well as in channel regulation by Ca(2+) and Mg(2+). To gain insight into the structural basis of DR3 function, we have determined the location of DR3 in the three-dimensional structure of RyR2. We inserted green fluorescent protein (GFP) into the middle of the DR3 region after Thr-1874 in the sequence. HEK293 cells expressing this GFP-RyR2 fusion protein, RyR2(T1874-GFP,) were readily detected by their green fluorescence, indicating proper folding of the inserted GFP. RyR2(T1874-GFP) was further characterized functionally by assays of Ca(2+) release and [(3)H]ryanodine binding. These analyses revealed that RyR2(T1874-GFP) functions as a caffeine- and ryanodine-sensitive Ca(2+) release channel and displays Ca(2+) dependence and [(3)H]ryanodine binding properties similar to those of the wild type RyR2. RyR2(T1874-GFP) was purified from cell lysates in a single step by affinity chromatography using GST-FKBP12.6 as the affinity ligand. The three-dimensional structure of the purified RyR2(T1874-GFP) was then reconstructed using cryoelectron microscopy and single particle image analysis. Comparison of the three-dimensional reconstructions of wild type RyR2 and RyR2(T1874-GFP) revealed the location of the inserted GFP, and hence the DR3 region, in one of the characteristic domains of RyR, domain 9, in the clamp-shaped structure adjacent to the FKBP12 and FKBP12.6 binding sites. COOH-terminal truncation analysis demonstrated that a region between 1815 and 1855 near DR3 is essential for GST-FKBP12.6 binding. These results provide a structural basis for the role of the DR3 region in excitation-contraction coupling and in channel regulation.  相似文献   

2.
Ryanodine receptors (RyRs) are a family of calcium release channels found on intracellular calcium-handing organelles. Molecular cloning studies have identified three different RyR isoforms, which are 66-70% identical in amino acid sequence. In mammals, the three isoforms are encoded by three separate genes located on different chromosomes. The major variations among the isoforms occur in three regions, known as divergent regions 1, 2, and 3 (DR1, DR2, and DR3). In the present study, a modified RyR2 (cardiac isoform) cDNA was constructed, into which was inserted a green fluorescent protein (GFP)-encoding cDNA within DR2, specifically after amino acid residue Thr1366 (RyR2(T1366-GFP)). HEK293 cells expressing RyR2(T1366-GFP) cDNAs showed caffeine-sensitive and ryanodine-sensitive calcium release, demonstrating that RyR2(T1366-GFP) forms functional calcium release channels. Cells expressing RyR2(T1366-GFP) were identified readily by the characteristic fluorescence of GFP, indicating that the overall structure of the inserted GFP was retained. Cryo-electron microscopy (cryo-EM) of purified RyR2(T1366-GFP) showed structurally intact receptors, and a three-dimensional reconstruction was obtained by single-particle image processing. The location of the inserted GFP was obtained by comparing this three-dimensional reconstruction to one obtained for wild-type RyR2. The inserted GFP and, consequently Thr1366 within DR2, was mapped on the three-dimensional structure of RyR2 to domain 6, one of the characteristic cytoplasmic domains that form part of the multi-domain "clamp" regions of RyR2. The three-dimensional location of DR2 suggests that it plays roles in the RyR conformational changes that occur during channel gating, and possibly in RyR's interaction with the dihydropyridine receptor in excitation-contraction coupling. This study further demonstrates the feasibility and reliability of the GFP insertion/cryo-EM approach for correlating RyR's amino acid sequence with its three-dimensional structure, thereby enhancing our understanding of the structural basis of RyR function.  相似文献   

3.
A region between residues 414 and 466 in the cardiac ryanodine receptor (RyR2) harbors more than half of the known NH(2)-terminal mutations associated with cardiac arrhythmias and sudden death. To gain insight into the structural basis of this NH(2)-terminal mutation hot spot, we have determined its location in the three-dimensional structure of RyR2. Green fluorescent protein (GFP), used as a structural marker, was inserted into the middle of this mutation hot spot after Ser-437 in the RyR2 sequence. The resultant GFP-RyR2 fusion protein, RyR2(S437-GFP,) was expressed in HEK293 cells and characterized using Ca(2+) release, [(3)H]ryanodine binding, and single cell Ca(2+) imaging studies. These functional analyses revealed that RyR2(S437-GFP) forms a caffeine- and ryanodine-sensitive Ca(2+) release channel that possesses Ca(2+) and caffeine dependence of activation indistinguishable from that of wild type (wt) RyR2. HEK293 cells expressing RyR2(S437-GFP) displayed a propensity for store overload-induced Ca(2+) release similar to that in cells expressing RyR2-wt. The three-dimensional structure of the purified RyR2(S437-GFP) was reconstructed using cryo-electron microscopy and single particle image processing. Subtraction of the three-dimensional reconstructions of RyR2-wt and RyR2(S437-GFP) revealed the location of the inserted GFP, and hence the NH(2)-terminal mutation hot spot, in a region between domains 5 and 9 in the clamp-shaped structure. This location is close to a previously mapped central disease-causing mutation site located in a region between domains 5 and 6. These results, together with findings from previous studies, suggest that the proposed interactions between the NH(2)-terminal and central regions of RyR2 are likely to take place between domains 5 and 6 and that the clamp-shaped structure, which shows substantial conformational differences between the closed and open states, is highly susceptible to disease-causing mutations.  相似文献   

4.
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.  相似文献   

5.
Type 2 ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. Phosphorylation of RyR2 by cAMP-dependent protein kinase A and by calmodulin-dependent protein kinase II modulates channel activity. Hyperphosphorylation at a single amino acid residue, Ser-2808, has been proposed to directly disrupt the binding of a 12.6-kDa FK506-binding protein (FKBP12.6) to RyR2, causing a RyR2 malfunction that triggers cardiac arrhythmias in human heart failure. To determine the structural basis of the interaction between Ser-2808 and FKBP12.6, we have employed two independent approaches to map this phosphorylation site in RyR2 by three-dimensional cryo-electron microscopy. In one approach, we inserted a green fluorescent protein (GFP) after amino acid Tyr-2801, and mapped the GFP three-dimensional location in the RyR2 structure. In another approach, the binding site of monoclonal antibody 34C was mapped in the three-dimensional structure of skeletal muscle RyR1. The epitope of antibody 34C has been mapped to amino acid residues 2,756 through 2,803 of the RyR1 sequence, corresponding to residues 2,722 through 2,769 of the RyR2 sequence. These locations of GFP insertion and antibody binding are adjacent to one another in domain 6 of the cytoplasmic clamp region. Importantly, the three-dimensional location of the Ser-2808 phosphorylation site is 105-120 A distance from the FKBP12.6 binding site mapped previously, indicating that Ser-2808 is unlikely to be directly involved in the binding of FKBP12.6 to RyR2, as had been proposed previously.  相似文献   

6.
In skeletal muscle, an anterograde signal from the dihydropyridine receptor (DHPR) to the ryanodine receptor (RyR1) is required for excitation-contraction (EC) coupling and a retrograde signal from RyR1 to the DHPR regulates the magnitude of the calcium current carried by the DHPR. As a tool for studying biosynthesis and targeting, we constructed a cDNA encoding green fluorescent protein (GFP) fused to the amino terminal of RyR1 and expressed it in dyspedic myotubes. The GFP-RyR1 was present in a restricted domain near the nucleus injected with cDNA and was fully functional, which places constraints on the location of the amino terminal in the folded structure of RyR1.  相似文献   

7.
The ryanodine receptor (RyR) is a large homotetrameric protein with a hydrophobic domain at the C-terminal end that resides in the endoplasmic reticulum (ER) or sarcoplasmic reticulum membrane and forms the conduction pore of a Ca(2+) release channel. Our previous studies showed that RyR expressed in heterologous cells localized to the ER membrane. Confocal microscopic imaging indicated that the ER retention signal is likely present within the C-terminal portion of RyR, a region that contains four putative transmembrane segments. To identify the amino acid sequence responsible for ER retention of RyR, we expressed fusion proteins containing intercellular adhesion molecule (ICAM), various fragments of RyR, and green fluorescent protein (GFP) in Chinese hamster ovary and COS-7 cells. ICAM is a plasma membrane-resident glycoprotein and serves as a reporter for protein trafficking to the cell surface membrane. Imaging analyses indicated that ICAM-GFP fusion proteins with RyR sequence preceding the four transmembrane segments, ICAM-RyR-(3661-3993)-GFP, and with RyR sequence corresponding to transmembrane segments 1, 2, and 3, ICAM-RyR-(4558-4671)-GFP and ICAM-RyR-(4830-4919)-GFP, were localized to the plasma membrane; fusion proteins containing the fourth transmembrane segment of RyR, ICAM-RyR-(4913-4943)-GFP, were retained in the ER. Biochemical assay showed that ICAM-RyR-GFP fusion proteins that target to the plasma membrane are fully glycosylated, and those retained in the intracellular membrane are core-glycosylated. Together our data indicate that amino acids 4918-4943 of RyR contain the signal sequence for ER retention of the Ca(2+) release channel.  相似文献   

8.
Xu X  Bhat MB  Nishi M  Takeshima H  Ma J 《Biophysical journal》2000,78(3):1270-1281
Ryanodine is a plant alkaloid that was originally used as an insecticide. To study the function and regulation of the ryanodine receptor (RyR) from insect cells, we have cloned the entire cDNA sequence of RyR from the fruit fly Drosophila melanogaster. The primary sequence of the Drosophila RyR contains 5134 amino acids, which shares approximately 45% identity with RyRs from mammalian cells, with a large cytoplasmic domain at the amino-terminal end and a small transmembrane domain at the carboxyl-terminal end. To characterize the Ca(2+) release channel activity of the cloned Drosophila RyR, we expressed both full-length and a deletion mutant of Drosophila RyR lacking amino acids 277-3650 (Drosophila RyR-C) in Chinese hamster ovary cells. For subcellular localization of the expressed Drosophila RyR and Drosophila RyR-C proteins, green fluorescent protein (GFP)-Drosophila RyR and GFP-Drosophila RyR-C fusion constructs were generated. Confocal microscopic imaging identified GFP-Drosophila RyR and GFP-Drosophila RyR-C on the endoplasmic reticulum membranes of transfected cells. Upon reconstitution into the lipid bilayer membrane, Drosophila RyR-C formed a large conductance cation-selective channel, which was sensitive to modulation by ryanodine. Opening of the Drosophila RyR-C channel required the presence of microM concentration of Ca(2+) in the cytosolic solution, but the channel was insensitive to inhibition by Ca(2+) at concentrations as high as 20 mM. Our data are consistent with our previous observation with the mammalian RyR that the conduction pore of the calcium release channel resides within the carboxyl-terminal end of the protein and further demonstrate that structural and functional features are essentially shared by mammalian and insect RyRs.  相似文献   

9.
Ryanodine, a plant alkaloid, is one of the most widely used pharmacological probes for intracellular Ca(2+) signaling in a variety of muscle and non-muscle cells. Upon binding to the Ca(2+) release channel (ryanodine receptor), ryanodine causes two major changes in the channel: a reduction in single-channel conductance and a marked increase in open probability. The molecular mechanisms underlying these alterations are not well understood. In the present study, we investigated the gating behavior and Ca(2+) dependence of the wild type (wt) and a mutant cardiac ryanodine receptor (RyR2) after being modified by ryanodine. Single-channel studies revealed that the ryanodine-modified wt RyR2 channel was sensitive to inhibition by Mg(2+) and to activation by caffeine and ATP. In the presence of Mg(2+), the ryanodine-modified single wt RyR2 channel displayed a sigmoidal Ca(2+) dependence with an EC(50) value of 110 nm, whereas the ryanodine-unmodified single wt channel exhibited an EC(50) of 120 microm for Ca(2+) activation, indicating that ryanodine is able to increase the sensitivity of the wt RyR2 channel to Ca(2+) activation by approximately 1,000-fold. Furthermore, ryanodine is able to restore Ca(2+) activation and ligand response of the E3987A mutant RyR2 channel that has been shown to exhibit approximately 1,000-fold reduction in Ca(2+) sensitivity to activation. The E3987A mutation, however, affects neither [(3)H]ryanodine binding to, nor the stimulatory and inhibitory effects of ryanodine on, the RyR2 channel. These results demonstrate that ryanodine does not "lock" the RyR channel into an open state as generally believed; rather, it sensitizes dramatically the channel to activation by Ca(2+).  相似文献   

10.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

11.
Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, F?rster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 ? from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.  相似文献   

12.
Central core disease (CCD) is a human myopathy that involves a dysregulation in muscle Ca(2)+ homeostasis caused by mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), the protein that comprises the calcium release channel of the SR. Although genetic studies have clearly demonstrated linkage between mutations in RyR1 and CCD, the impact of these mutations on release channel function and excitation-contraction coupling in skeletal muscle is unknown. Toward this goal, we have engineered the different CCD mutations found in the NH(2)-terminal region of RyR1 into a rabbit RyR1 cDNA (R164C, I404M, Y523S, R2163H, and R2435H) and characterized the functional effects of these mutations after expression in myotubes derived from RyR1-knockout (dyspedic) mice. Resting Ca(2)+ levels were elevated in dyspedic myotubes expressing four of these mutants (Y523S > R2163H > R2435H R164C > I404M RyR1). A similar rank order was also found for the degree of SR Ca(2)+ depletion assessed using maximal concentrations of caffeine (10 mM) or cyclopiazonic acid (CPA, 30 microM). Although all of the CCD mutants fully restored L-current density, voltage-gated SR Ca(2)+ release was smaller and activated at more negative potentials for myotubes expressing the NH(2)-terminal CCD mutations. The shift in the voltage dependence of SR Ca(2)+ release correlated strongly with changes in resting Ca(2)+, SR Ca(2)+ store depletion, and peak voltage-gated release, indicating that increased release channel activity at negative membrane potentials promotes SR Ca(2)+ leak. Coexpression of wild-type and Y523S RyR1 proteins in dyspedic myotubes resulted in release channels that exhibited an intermediate degree of SR Ca(2)+ leak. These results demonstrate that the NH(2)-terminal CCD mutants enhance release channel sensitivity to activation by voltage in a manner that leads to increased SR Ca(2)+ leak, store depletion, and a reduction in voltage-gated Ca(2)+ release. Two fundamentally distinct cellular mechanisms (leaky channels and EC uncoupling) are proposed to explain how altered release channel function caused by different mutations in RyR1 could result in muscle weakness in CCD.  相似文献   

13.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function.  相似文献   

14.
Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor.  相似文献   

15.
Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.  相似文献   

16.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease that manifests as syncope or sudden death during high adrenergic tone in the absence of structural heart defects. It is primarily caused by mutations in the cardiac ryanodine receptor (RyR2). The mechanism by which these mutations cause arrhythmia remains controversial, with discrepant findings related to the role of the RyR2 binding protein FKBP12.6. The purpose of this study was to characterize a novel RyR2 mutation identified in a kindred with clinically diagnosed CPVT.Single-strand conformational polymorphism analysis and direct DNA sequencing were used to screen the RyR2 gene for mutations. Site-directed mutagenesis was employed to introduce the mutation into the mouse RyR2 cDNA. The impact of the mutation on the interaction between RyR2 and a 12.6 kDa FK506 binding protein (FKBP12.6) was determined by immunoprecipitation and immunoblotting and its effect on RyR2 function was characterized by single cell Ca2+ imaging and [3H]ryanodine binding.A novel CPVT mutation, E189D, was identified. The E189D mutation does not alter the affinity of the channel for FKBP12.6, but it increases the propensity for store-overload-induced Ca2+ release (SOICR). Furthermore, the E189D mutation enhances the basal channel activity of RyR2 and its sensitivity to activation by caffeine.The E189D RyR2 mutation is causative for CPVT and functionally increases the propensity for SOICR without altering the affinity for FKBP12.6. These observations strengthen the notion that enhanced SOICR, but not altered FKBP12.6 binding, is a common mechanism by which RyR2 mutations cause arrhythmias.Key words: arrhythmia, calcium, death sudden, genetics, ion channels  相似文献   

17.
We have investigated the biochemical properties of the rabbit ryanodine receptor type 1 (RyR1) from skeletal muscle functionally expressed in insect sf 21 cells infected with recombinant baculovirus. Equilibrium [3H]ryanodine binding assays applied to total membrane fractions from sf 21 cells expressing recombinant RyR1 showed a non-hyperbolic saturation curve (Hill coefficient = 2.1). The [3H]ryanodine binding was enhanced by 1 mM AMP-PCP and 10 mM caffeine, whereas 10 mM Mg(2+) and 5 microM ruthenium red reduced the specific binding. The dependence of [3H]ryanodine binding on ionic strength showed positive cooperativity (Hill coefficient = 2.2) with a plateau at 1 M KCl. The recombinant RyR1 showed a bell-shaped [3H]ryanodine binding curve when free [Ca(2+)] was increased, with an optimal concentration around 100 microM.Confocal microscopy studies using the Ca(2+) ATPase selective inhibitor, thapsigargin coupled to fluorescein and ryanodine coupled to Texas red demonstrated that the recombinant RyR1 and the Ca(2+) ATPase co-localize to the same intracellular membrane. No significant RyR1 fluorescence was observed at the plasma membrane.Fluo-4-loaded sf 21 cells expressing recombinant RyR1 responded to activating-low ryanodine concentrations (100 nM) or caffeine (10 mM) with a sharp rise in intracellular Ca2 followed by a sustained phase, in contrast, sf 21 cells expressing the human bradykinin type 2 receptor did not respond to ryanodine or caffeine.These results demonstrate the expression of recombinant RyR1 in sf 21 cells with functional properties similar to what has been previously reported for native RyR1 in mammalian tissues, however, some differences were observed in [3H]ryanodine binding assays compared to native rabbit RyR1. Hence, the baculovirus expression system provides a generous source of protein to accomplish structure-function studies and an excellent model to assess functional properties of wild type and mutant RyR1.  相似文献   

18.
The cardiac ryanodine receptor (RyR2), the major calcium release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes, has recently been shown to be involved in at least two forms of sudden cardiac death (SCD): (1) Catecholaminergic polymorphic ventricular tachycardia (CPVT) or familial polymorphic VT (FPVT); and (2) Arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Eleven RyR2 missense mutations have been linked to these diseases. All eleven RyR2 mutations cluster into 3 regions of RyR2 that are homologous to the three malignant hyperthermia (MH)/central core disease (CCD) mutation regions of the skeletal muscle ryanodine receptor/calcium release channel RyR1. MH/CCD RyR1 mutations have been shown to alter calcium-induced calcium release. Sympathetic nervous system stimulation leads to phosphorylation of RyR2 by protein kinase A (PKA). PKA phosphorylation of RyR2 activates the channel. In conditions associated with high rates of SCD such as heart failure RyR2 is PKA hyperphosphorylated resulting in "leaky" channels. SR calcium leak during diastole can generate "delayed after depolarizations" that can trigger fatal cardiac arrhythmias (e.g., VT). We propose that RyR2 mutations linked to genetic forms of catecholaminergic-induced SCD may alter the regulation of the channel resulting in increased SR calcium leak during sympathetic stimulation.  相似文献   

19.
Flubendiamide represents a novel chemical family of substituted phthalic acid diamides with potent insecticidal activity. So far, the molecular target and the mechanism of action were not known. Here we present for the first time evidence that phthalic acid diamides activate ryanodine-sensitive intracellular calcium release channels (ryanodine receptors, RyR) in insects. With Ca(2+) measurements, we showed that flubendiamide and related compounds induced ryanodine-sensitive cytosolic calcium transients that were independent of the extracellular calcium concentration in isolated neurons from the pest insect Heliothis virescens as well as in transfected CHO cells expressing the ryanodine receptor from Drosophila melanogaster. Binding studies on microsomal membranes from Heliothis flight muscles revealed that flubendiamide and related compounds interacted with a site distinct from the ryanodine binding site and disrupted the calcium regulation of ryanodine binding by an allosteric mechanism. This novel insecticide mode of action seems to be restricted to specific RyR subtypes because the phthalic acid diamides reported here had almost no effect on mammalian type 1 ryanodine receptors.  相似文献   

20.
Two single-nucleotide polymorphisms in the type 2 ryanodine receptor (RyR2) leading to the nonsynonymous amino acid replacements G1885E and G1886S are associated with arrhythmogenic right ventricular cardiomyopathy in patients who are carrying both of the corresponding RyR2 alleles. The functional properties of HEK293 cell lines isogenically expressing RyR2 mutants associated with arrhythmogenic right ventricular cardiomyopathy, RyR2-G1885E, RyR2-G1886S, RyR2-G1886D (mimicking a constitutively phosphorylated Ser1886), and the double mutant RyR2-G1885E/G1886S were investigated by analyzing the intracellular Ca2+ release activity resulting from store-overload-induced calcium release. The substitution of serine for Gly1886 caused a significant increase in the cellular Ca2+ oscillation activity compared with RyR2 wild-type-expressing HEK293 cells. It was even more pronounced if glycine 1885 or 1886 was replaced by the acidic amino acids glutamate (G1885E) or aspartate (G1886D). Surprisingly, when both substitutions were introduced in the same RyR2 subunit (RyR2-G1885E/G1886S), the store-overload-induced calcium release activity was nearly completely abolished, although the Ca2+ loading of the intracellular stores was markedly enhanced, and the channel still displayed substantial Ca2+ release on stimulation by 5 mM caffeine. These results suggest that the adjacent glycines 1885 and 1886, located in the divergent region 3, are critical for the function and regulation of RyR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号