首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Small Ruminant Research》2001,39(2):121-130
Winter grazing of semi-domesticated reindeer (Rangifer t. tarandus) was investigated at the woodland lichen pasture (lichen approximately 550 kg DM ha−1) in Kaamanen, northern Finland during the winter 1996–1997. Nine female reindeer mainly dug their food in the snow for 122 days (3 December–4 April) in a fenced area of 36.3 ha. Over half of the fenced area was lichen dominated dry pine forest. The amount of lichens in lichen forest inside the fence was estimated before and after grazing. Area of grazed and condition of reindeer as well as snow conditions were monitored. Reindeer grazed over the whole area of lichen forest in early winter but from mid-winter they tended to graze on the areas with the greatest lichen abundancy. The amount of lichens measured decreased in the latter areas by 40% and in the other part of the lichen pasture by 17%, respectively. In both of these areas the residual amounts of lichens left after grazing were similar. Of the dominant lichens, the amount of C. stellaris decreased the most and the amount of Cl. uncialis the least. During the study, the estimated average daily area grazed varied from 4 to 87 m2 per reindeer. It was calculated that individual reindeer obtained 2.6 kg of lichen DM per day during the most intensive digging period when the body condition score and weight of reindeer increased. Otherwise, the body condition score and weight decreased. Reindeer finished foraging for ground lichens and started to search for arboreal lichens in mid-March when the snow layer was 70–80 cm thick and contained some hard snow layers which lifted reindeer. Both the amount of lichens in the pasture and the snow conditions essentially affect the nutritional status of reindeer in the woodland region during winter. Assuming that a reindeer is able to graze around 30 m2 per day in the snow during mid and late winter, there should be, on the basis of energy demand and grazing behaviour of reindeer as well as the nutritive value of lichen, an estimated 1000 kg lichen DM ha−1 available in a good condition woodland lichen pasture.  相似文献   

2.
The northward and upward movement of the tree line and gradual replacement of lichens with vascular plants associated with increasing temperatures and nutrient availability may change the reindeer pastures in Northern Fennoscandia. The productivity of reindeer forage will most probably increase, but their protein (nitrogen) concentrations may decrease because of higher temperatures and CO2 concentration. In the long term, the nutritive value of forage will depend on the mineralization rate and nutrient uptake from the soil. Enhanced UV-B is likely to increase the concentration of phenolics, decreasing forage quality and choice, but reindeer may adapt to increased phenolics. Increased winter precipitation, the occurrence of ice layers, deeper snow cover, and the appearance of molds beneath the snow cover may reduce the availability and/or quality of reindeer forage, but prolongation of snowless periods might have the opposite effect. The net balance of negative and positive effects will vary regionally depending on the climate, bedrock, vegetation, reindeer herding systems and socio-political factors. Multidisciplinary research is needed most importantly on the effects of the changing winter climate on reindeer forage, and the effect of modified forage quality on reindeer physiology.
Minna TurunenEmail:
  相似文献   

3.
While it has been widely proven that many lichens are extremely freeze-tolerant in the dry state, little is known about how moist lichens respond to freezing under oxic and anoxic conditions. In circumpolar areas where lichens are an important component of boreal and Arctic ecosystems, winter climate is changing, leading to increased frequency of winter thaw and ground-icing events. It is imperative to elucidate in further detail how northern vegetation responds to being encapsulated in ice. A winter icing simulation experiment was therefore undertaken, encapsulating two reindeer lichens (Cladonia stellaris and Cladonia rangiferina) and two epiphytic lichens (Parmeliopsis ambigua and Melanohalea olivacea) in ice at temperatures just below freezing for a maximum period of 98 d. Photosynthetic and chlorophyll fluorescence rates decreased strongly, clearly suggesting that the algal partner of the lichens was dying. Low but detectable respiration rates indicate that the fungal partner maintained some physiological activity. Ethanol accumulated in the lichens during ice encapsulation as a result of anaerobic respiration. The algae probably were dying from a combination of depletion of carbon reserves and toxic levels of ethanol and other stress metabolites. This experiment shows that boreal and Arctic-alpine lichens are sensitive to a warmer and more fluctuating winter climate. Increasing frequency of winter icing events may therefore have extensive and hitherto unknown effects on lichen-dominated ecosystems, their herbivores and the indigenous peoples whose livelihoods largely depend on them.  相似文献   

4.
Are lichens active under snow in continental Antarctica?   总被引:6,自引:0,他引:6  
Photosynthetic activity, detected as chlorophyll a fluorescence, was measured for lichens under undisturbed snow in continental Antarctica using fibre optics. The fibre optics had been buried by winter snowfall after being put in place the previous year under snow-free conditions. The fibre optics were fixed in place using specially designed holding devices so that the fibre ends were in close proximity to selected lichens. Several temperature and PPFD (photosynthetic photon flux density) sensors were also installed in or close to the lichens. By attaching a chlorophyll a fluorometer to the previously placed fibre optics it proved possible to measure in vivo potential photosynthetic activity of continental Antarctic lichens under undisturbed snow. The snow cover proved to be a very good insulator for the mosses and lichens but, in contrast to the situation reported for the maritime Antarctic, it retained the severe cold of the winter and prevented early warming. Therefore, the lichens and mosses under snow were kept inactive at subzero temperatures for a prolonged time, even though the external ambient air temperatures would have allowed metabolic activity. The results suggest that the major activity period of the lichens was at the time of final disappearance of the snow and lasted about 10-14 days. The activation of lichens under snow by high air humidity appeared to be very variable and species specific. Xanthoria mawsonii was activated at temperatures below -10 degrees C through absorption of water from high air humidity. Physcia dubia showed some activation at temperatures around -5 degrees C but only became fully activated at thallus temperatures of 0 degrees C through liquid water. Candelariella flava stayed inactive until thallus temperatures close to zero indicated that liquid water had become available. Although the snow cover represented the major water supply for the lichens, lichens only became active for a brief time at or close to the time the snow disappeared. The snow did not provide a protected environment, as reported for alpine habitats, but appeared to limit lichen activity. This provides at least one explanation for the observed negative effect of extended snow cover on lichen growth.  相似文献   

5.
Reindeer lichens are an important component of northern ecosystems. The aim of this study was to measure the growth rate of terricolous lichens as it is a key parameter involved in productivity of these ecosystems and an important part of lichen tolerance to reindeer grazing. Furthermore, the natural succession and the long-term effects of reindeer grazing on lichen community characteristics in two contrasting habitats were investigated as well as the interactions between lichen cover and mosses and vascular plants. Biomass and coverage measurements were conducted in a lichen woodland and in a subarctic heath with grazed and ungrazed areas in northern Finland. Measurements spanning over 13 yr of undisturbed development show that the growth rate of Cladina stellaris can be as high as >0.17 g g−1 produced annually, although in average growth rates were much lower. During the succession of ground vegetation, C. stellaris , C. rangiferina , C. mitis and Cetraria nivalis increased in biomass in fenced areas and were reduced most in biomass by reindeer in unprotected areas. Reindeer grazing and trampling seem to change the vegetation towards a type that is dominated by small dwarf shrubs, bare soil and minute-cup lichens ( Cladonia spp.). Removing the lichen layer by reindeer may reduce natural regeneration of pine trees as implied by increasing numbers of pine seedlings with increasing lichen cover.  相似文献   

6.
The survival of reindeer during winter, their period of greatest food stress, depends largely on the abundance and accessibility of forage in their pastures. In Northern Sweden, realized availability of forage is notably affected by snow conditions and the impacts of forestry. While these factors have been examined in isolation, their combined effect has, to the best of our knowledge to date, not been researched. In this study, vegetation surveys and analysis of snow conditions were undertaken in forest stands at various stages of recovery from clear‐cutting. The variation in abundance and growth of understory species edible by reindeer, such as lichen, was noted as forests matured. The barrier effect of ice lenses in the snow was also measured in these stands. Lichen biomass was significantly affected by a combination of stand maturity, understory vegetation height, and lichen height. Soil disturbance from the processes of felling and competition in the vegetation communities recovering from this disturbance were identified as key drivers of change in lichen biomass. Overall, clear‐cut forests had some of the greatest prevalence of ice lenses in the snow column, and forage availability at these sites was up to 61% less than in mature stands over 58 years in age. It is suggested that alternative silviculture methods are investigated for use in this reindeer herding region, as frequent clear‐cutting and consequent reduction in the average forest stand age and maturity class may be detrimental to reindeer grazing, reducing both abundance of forage, and access to it during winter.  相似文献   

7.
Intensive reindeer grazing has been hypothesized to drive vegetation shifts in the arctic tundra from a low-productive lichen dominated state to a more productive moss dominated state. Although the more productive state can potentially host more herbivores, it may still be less suitable as winter grazing grounds for reindeer, if lichens, the most preferred winter forage, are less abundant. Therefore, such a shift towards mosses may have severe consequences for reindeer husbandry if ground-growing lichens have difficulties to recover. We tested if reindeer cause this type of vegetation state shifts in boreal forest floor vegetation, by comparing plant species composition and major soil processes inside and outside of more than 40-year-old exclosures. Lichen biomass was more than twice as high inside exclosures than in grazed controls and almost 5 times higher than in heavily grazed patches. Contrary to our predictions, net N mineralization and plant production were higher in the exclosures than in the grazed controls. The lack of response of phytometer plants in a common garden bioassay indicated that changed soil moisture may drive effects of reindeer on plant productivity in these dry Pine forest ecosystems.  相似文献   

8.
Abstract. We studied the effects of Svalbard reindeer on the abundance of lichens in Spitsbergen. A survey was carried out in 14 areas with contrasting reindeer densities. Separate cover estimates for crustose, fructose and foliose lichens were taken in each area, and related to the density of reindeer pellet groups, a measure of reindeer density. Dominant macro lichen families were identified in 10 areas, and a full record of macrolichen species was taken in four additional areas. Variation in reindeer density is partially due to past overhunting, and subsequent incomplete recovery, releasing some areas from reindeer grazing for 100–200 yr. The cover of fruticose lichens was negatively related to reindeer pellet group density, indicating suppression by Svalbard reindeer. This makes their impact comparable to other members of the Rangifer genus around the northern hemisphere. The generally recorded low abundance of lichens in the diet of Svalbard reindeer compared to other Rangifer species, therefore, was interpreted as the depletion of fruticose lichens in Spitsbergen, and a subsequent switch to alternative foods. Of all fruticose lichens, Stereocaulon spp. appeared least sensitive to grazing. Crustose and foliose lichen cover was independent of reindeer pellet group density. The cover of crustose lichens was significantly related to latitude, with greater cover in more northern areas. Foliose lichens were more abundant in places where moss cover was high. We conclude that the impact of Svalbard reindeer on lichens is dependent on growth form, with fruticose lichens suffering from grazing, whereas foliose lichens might indirectly benefit from higher densities of reindeer or, like crustose lichens, be controlled by other factors.  相似文献   

9.
The effect of deposition of different fertilizers and of lime on lichens was investigated under field conditions. Three terricolous lichens were tested:Cladonia floerkeanaC. furcataandC. portentosa. The lichens were exposed to three types of powdered fertilizer (NPK-, N-, P-fertilizer) and lime. The applied nutrients were recorded in lichen thalli and soil. the influence on lichen growth rate and vegetation cover was estimated over 2 years. The response was a clear change in vegetation cover with an exceptional stimulating effect of NPK on the mossPolytrichum formosum. A lethal effect was observed onCladonia floerkeanafollowing exposure to lime. NPK and P had the most significant stimulatory effect onC. furcata. Only NPK promoted the growth ofC. portentosaand P, N or Ca had a negative effect.  相似文献   

10.
Relations between irradiance (I) and lichen growth were investigated for five macro‐lichens growing at two sites in Sweden. The lichens represented different mycobiont–photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW)–1 and the epiphytes 0·01 to 0·02 g (g DW)–1. When related to area, growth amounted to 30 to 70 g m?2 for the terricolous species and to 1 to 4 g m?2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g?1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four‐fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity.  相似文献   

11.
Predicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro‐africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum‐rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 μmol photons m?2 s?1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.  相似文献   

12.
Abstract:In contrast to virtually all other species of ruminants, reindeer (Rangifer tarandus) eat substantial amounts of lichens in winter. Several different species of lichens are eaten and most are highly palatable. The chemical composition and the in vitro digestibility of six species of terricolous lichens commonly eaten by reindeer were measured. Ruminal inoculum was obtained in winter from six free-ranging reindeer that had been grazing on natural pastures in northern Norway. Analysis of the plant parts recovered from their rumens confirmed that the animals had been eating a mixed diet that included both lichens and vascular plants. The chemical composition and the in vitro digestibility of the different species of lichens varied considerably between species and genera. Cetraria islandica, C. nivalis andCladonia arbuscula were highly digestible [69–77% dry matter (DM)], Stereocaulon paschale was poorly digestible (43% DM), whereas Cladonia stellaris and C. gracilis had an intermediate digestibility (56–57% DM). Mixing Cladonia stellaris with vascular plants (50:50) had no effect on the in vitro digestibility of the combined substrates. The in vitro digestibility of Cladonia stellaris in inoculum from two captive reindeer which had had no access to lichens was very low (10% DM). This shows that the source of inoculum used for digestibility trials has a major effect on the apparent digestibility of the substrates. Evidently, the extent to which reindeer are able to utilize lichens depends on the species that are selected and on what the animals have been eating recently.  相似文献   

13.
In free-living (FL) reindeer eating a natural mixed winter diet dominated by lichens, captive (CF) reindeer fed pure lichens ad libitum, and CF reindeer subsequently starved for 1 day (CS1 reindeer) or 4 days (CS4 reindeer), the dominant rumen anaerobic bacteria were characterized, their population densities were estimated, and ruminal pH and volatile fatty acid concentrations were determined. In the FL reindeer, the total median viable anaerobic bacterial population ranged from 18 x 10(8) to 35 x 10(8) cells per ml of rumen fluid (n = 4), compared with 26 x 10(8) to 34 x 10(8) and 0.09 x 10(8) to 0.1 x 10(8) cells per ml of rumen fluid in CF reindeer (n = 2) and CS4 reindeer (n = 2), respectively. The median bacterial population adhering to the rumen solids ranged from 260 x 10(8) to 450 x 10(8), 21 x 10(8) to 38 x 10(8), and 0.5 x 10(8) cells per g (wet weight) of rumen solids in FL, CF, and CS4 reindeer, respectively. Although there were variations in the rumen bacterial composition among the FL reindeer (n = 4), strains of Bacteroides, Fibrobacter, Streptococcus, and Clostridium dominated in the rumen fluid. Streptococcus spp. and Clostridium spp. were the dominant bacteria in the CF reindeer (n = 2), while in the CS4 reindeer (n = 2) the dominant bacteria were Fusobacterium spp., members of the family Enterobacteriaceae, and Eubacterium spp. Transmission electron micrographs of lichen particles from the rumen of one FL reindeer, one CF reindeer, and one CS4 reindeer show bacteria resembling Bacteroides spp. adhering to the lichen particles, evidently digesting the lichen hyphae from the inside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Horstkotte T  Moen J  Lämås T  Helle T 《PloS one》2011,6(12):e28779
In northern Sweden, the availability of arboreal lichens (Bryoria fuscescens, Alectoria sarmentosa) as winter grazing resources is an important element in reindeer husbandry. With the industrialization of forestry, forests rich in arboreal lichens have diminished considerably. Here, we analyze how forestry has impacted lichen availability from the 1920's to the present day and model its future development assuming different forest management scenarios.We recorded the current occurrence of B. fuscescens in 144 sampling plots, stratified by forest age class and dominant tree species in a 26,600 ha boreal forest landscape that is used for both reindeer herding and forestry. Lichen abundance was visually estimated in four classes: none, sparse, moderate and abundant. A binary logistic model using forest age as the independent variable was developed to predict the probability of lichens being present. Using this model, we found that lichens were present in stands that are at least 63 years old. Because of the relative paucity of stands rich in arboreal lichens, it was not possible to reliably determine how age affects the variation in abundance of older forest stands. The historical development of forests where arboreal lichens could potentially occur was studied using historic forestry records dating back 80 years. Between 1926 and the present day, forestry has reduced the cover of forests older than 60 years from 84% to 34%. The likely future spatial coverage of these stands over the next 120 years was estimated for two different management scenarios and an unmanaged reference scenario, using the Heureka strategic planning program. Under both the "business as usual" scenario and that involving more intensive forestry, continued decreases in lichen availability are projected. Our results emphasize the importance of alternative forestry practices, such as prolonged rotation periods, to increase the availability of arboreal lichens as a grazing resource for reindeer.  相似文献   

15.
Reindeer and caribou Rangifer tarandus are reported to avoid human infrastructure such as roads, high-voltage power lines, pipelines, and tourist resorts. Lichens are important forage for reindeer during winter, and their relatively slow growth rates make them vulnerable to overgrazing. Height and volume of lichens are often used as an indicator of grazing pressure by reindeer and, thus, as an indirect measure of Rangifer avoidance of human infrastructure. We sampled lichen height in Cetraria nivalis-dominated communities along 4 and 3 parallel transects located on two parallel mountain ridges in Hardangervidda, south central Norway. The lichen measurements were analyzed in relation to altitude and the distance from four tourist cabins in the area and a highway (Rv7) running perpendicular to the 7 transects. The mountain ridge with 4 transects is part of a much used migratory corridor for wild reindeer R. tarandus tarandus. Along the nonmigratory ridge, lichen height decreased 35% over an 8-km distance from Rv7 and a tourist cabin, indicating reindeer aversion toward Rv7 and/or a tourist cabin. No similar relationship was found for the migration ridge in relation to distance from Rv7 or the tourist cabins. Our results suggest that avoidance of human infrastructure by wild reindeer might be limited where reindeer use of winter pastures is influenced by herd traditions and/or motivation to follow established migration corridors. This has important implications for addressing the use of similar pasture measurements when testing for Rangifer aversion toward human disturbances.  相似文献   

16.
Several investigations have revealed surprisingly high activities during the winter in vegetation and soil in temperate and subarctic areas. Plants have been found to photosynthesize even under snow cover and at temperatures below freezing, and decomposer microorganisms can function, at low rates, all year around. In temperate grasslands, the vegetation includes winter annual herbs as well as bryophytes, which have the potential to be active and are thus susceptible to changing temperatures during winter. If temperatures stay below freezing and there is a snow cover, an increase in temperatures could in fact decrease the soil temperature due to reduced insulation by snow cover. On the other hand, if winter temperatures initially fluctuate around the freezing point, an increase by a few degrees might produce frost‐free conditions. Based on available data, the composition of plant communities are strongly influenced by temperature conditions in the preceding winter. We conclude that the winter season in grasslands needs more research attention, to start to resolve which species are active and how they respond to a changing climate.  相似文献   

17.
为了解物种和基物偏好对地衣元素水平的影响,测定了采集于河北太行山区6个地点的6种地衣体内的16种元素(Al、Ba、Cd、Cr、Cu、Fe、Mn、Mo、Na、P、S、Sc、Sr、Ti、V和Zn)的含量。这6种地衣包括3种石生地衣(鸡冠胶衣Collema cristatum、中国石黄衣Xanthoria mandschurica和淡腹黄梅Xanthoparmelia mexicana),2种土生地衣(莲座石蕊Cladonia pocillum和石果衣Endocarpon pusillum),及1种树生地衣(毛边黑蜈蚣衣Phaeophyscia hispidula)。主成分分析(PCA)和费里德曼双向秩方差分析(Friedman检验)结果显示,物种和基物偏好对地衣体内元素含量的影响显著,而地点的影响不显著。树生地衣累积的大气源元素(P、S和Zn)高于土生和石生地衣。土生地衣体内的地壳源元素(Al、Ba、Fe、Mn、Mo、Na、Sc、Sr、Ti和V)和大气源元素Cr的含量最高。石生地衣的大气源元素(P、S和Zn)含量近于土生地衣,但地壳源元素含量较低;3种石生地衣在这些元素的含量方面差异不大。这些结果表明以地衣化学组成监测大气元素沉降的研究需慎重考虑物种及基物偏好的影响。  相似文献   

18.
Timo Helle  Ilpo Kojola 《Ecography》2008,31(2):221-230
We examined how population density, winter weather, snow conditions, and 2 large-scale climatic indices (North Atlantic Oscillation, NAO, and Arctic Oscillation, AO) influenced demography (reproduction and mortality) in an alpine herd of semi-domesticated reindeer Rangifer tarandus between 1959 and 2000 in Finnish Lapland. The herd lived on heavily grazed lichen pastures, with winter densities between 0.8 and 3.9 individuals km−2. Icing conditions occurred every 7th yr, on an average, and decreased reproductive rate (calves/females) by 49%. In general linear models icing remarkably increased the fit of snow models to reproductive rate. Incorporation of an interaction term between icing and the snow depth index provided better fit than a model without interaction. Delayed snowmelt decreased reproductive rate. For the day of snowmelt, however, the model without interaction was better than the interaction model. These 3 models provided the best fit to the data and accounted for 51–54% of the variation in reproductive rate. Winter mortality was related to density and large-scale climatic indices, but not to local winter weather except a slight increase in mortality during an icing winter. The best model for winter mortality, including reindeer density and NAO, accounted for 26% of variation in mortality. Three factors may be involved explaining weak density dependence or the lack of such dependence; climate change scenarios that predict higher winter temperature, more frequent thawing-freezing periods, and deeper snow would be expected to decrease reproductive rate and increase winter mortality of reindeer and thus to reduce profitability of reindeer husbandry. In contrast, early springs would be advantageous for reindeer in the short term.  相似文献   

19.
Mammalian herbivores have important top‐down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free‐ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low‐intensity trampling is rarely studied and quantified. The cold‐adapted northern tundra reindeer (Rangifer tarandus) is a wide‐ranging keystone herbivore in large open alpine and Arctic ecosystems. Reindeer may largely subsist on different species of slow‐growing ground lichens, particularly in winter. Lichen grows in dry, snow‐poor habitats with frost. Their varying elasticity makes them suitable for studying trampling. In replicated factorial experiments, high‐resolution 3D laser scanning was used to quantify lichen volume loss from trampling by a reindeer hoof. Losses were substantial, that is, about 0.3 dm3 per imprint in dry thick lichen, but depended on type of lichen mat and humidity. Immediate trampling volume loss was about twice as high in dry, compared to humid thin (2–3 cm), lichen mats and about three times as high in dry vs. humid thick (6–8 cm) lichen mats, There was no significant difference in volume loss between 100% and 50% wetted lichen. Regained volume with time was insignificant for dry lichen, whereas 50% humid lichen regained substantial volumes, and 100% humid lichen regained almost all lost volume, and mostly within 10–20 min. Reindeer trampling may have from near none to devastating effects on exposed lichen forage. During a normal week of foraging, daily moving 5 km across dry 6‐ to 8‐cm‐thick continuous lichen mats, one adult reindeer may trample a lichen volume corresponding to about a year's supply of lichen. However, the lichen humidity appears to be an important factor for trampling loss, in addition to the extent of reindeer movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号