首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isosmotic volume reabsorption in rat proximal tubule   总被引:1,自引:1,他引:0       下载免费PDF全文
A theoretical model incorporation both active and passive forces has been developed for fluid reabsorption from split oil droplets in rat intermediate and late proximal tubule. Of necessity, simplifying assumptions have been introduced; we have assumed that the epithelium can be treated as a single membrane and that the membrane "effective" HCO3 permeability is near zero. Based on this model with its underlying assumptions, the following conclusions are drawn. Regardless of the presence or absence of active NaCl transport, fluid reabsorption from the split oil droplet is isosmotic. The reabsorbate osmolarity can be affected by changes in tubular permeability parameters and applied forces but is not readily altered from an osmolarity essentially equal to that of plasma. In a split droplet, isosmotic flow need not be a special consequence of active Na transport, is not the result of a particular set of permeability properties, and is not merely a trivial consequence of a very high hydraulic conductivity; isosmotic flow can be obtained with hydraulic conductivity nearly an order of magnitude lower than that previously measured in the rat proximal convoluted tubule. Isosmotic reabsorption is, in part, the result of the interdependence of salt and water flows, their changing in parallel, and thus their ratio, the reabsorbate concentration being relatively invariant. Active NaCl transport can cause osmotic water flow by reducing the luminal fluid osmolarity. In the presence of passive forces the luminal fluid can be hypertonic to plasma, and active NaCl transport can still exert its osmotic effect on volume flow. There are two passive forces for volume flow: the Cl gradient and the difference in effective osmotic pressure; they have an approximately equivalent effect on volume flow. Experimentally, we have measured volume changes in a droplet made hyperosmotic by the addition of 50 mM NaCl; the experimental results are predicted reasonably well by our theoretical model.  相似文献   

2.
A model for the primary active transport by an ion pump protein is proposed. The model, the "energization-relaxation channel model," describes an ion pump as a multiion channel that undergoes stochastic transitions between two conformational states by external energy supply. When the potential profile along ion transport pathway is asymmetrical, a net ion flux is induced by the transitions. In this model, the coupling of the conformational change and ion transport is stochastic and loose. The model qualitatively reproduces known properties of active transport such as the effect of ion concentration gradient and membrane potential on the rate of transport and the inhibition of ion transport at high ion concentration. We further examined the effect of various parameters on the ion transport properties of this model. The efficiency of the coupling was almost 100% under some conditions.  相似文献   

3.
Summary A steady-state model of solution flow in a tubular semipermeable membrane is developed for an arbitrary distribution of solute sources and sinks along the translocation path. It is demonstrated that the volume-flow mechanism of phloem transport depends only on the two assumptions: 1. that the plasmalemma of the sieve tube is a differentially permeable membrane, and 2. that sugars are actively secreted into and absorbed from the lumen of the sieve tube. It is shown that in the absence of a pressure gradient, there is a negligible concentration gradient over most of the translocation path. However, in the presence of a pressure gradient a small concentration gradient develops as a result of the continually changing chemical potential of water along the direction of solution flow. For Poiseuille flow the concentration gradient is approximately proportional to the mean stream velocity.  相似文献   

4.
Selective extraction of a protein from a mixture can be accomplished using an adsorptive membrane and low displacement recuperative parametric pumping. Low displacement recuperative parametric pumping can lead to the preferential transport of an adsorbing solute and the rejection of nonadsorbing solutes by the adsorptive membrane. Using a protein mixture consisting of lysozyme and myoglobin, we have found the conditions under which lysozyme is preferentially transported through an ion-exchange membrane cartridge while myoglobin is rejected by the membrane. Trends observed when parameters such as the desorbent concentration, feed concentration, and flow rate are varied agree with the predictions of a mathematical model. Comparison with facilitated diffusion shows that preferential transport can lead to higher solute fluxes, albeit at lower selectivity. Additionally, preferential transport can be used to transport a solute up a concentration gradient and to selectively extract a solute from a feed that contains suspended solids. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

6.
The Mechanism of Isotonic Water Transport   总被引:15,自引:4,他引:11       下载免费PDF全文
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified.  相似文献   

7.
Studies on the vesicular fraction of myometrium sarcolemma showed that in the absence of initial Ca2+ gradient the vesicles activity accumulate Ca2+ by utilizing the energy of the antiport-directed Na+ gradient. Monensin (50 microM) suppresses practically completely the Ca2+ transport. The amount of Ca2+ entering the vesicles against the concentration gradient diminishes with a decrease in the oppositely directed Na+ gradient. Cd2+ (5 mM) causes a complete inhibition of active Ca2+ transport, whereas Mn2+ and Mg2+ inhibit this process by 85% and 35%, respectively; amiloride (500 microM) is fairly ineffective. In the absence of initial Ca2+ and Na+ gradients valinomycin (0.05-1 microM) does not affect the changes in Ca2+ concentration in the intravesicular volume both with and without K+ gradient. Under conditions of initial equilibrium for Ca2+ and Na+ the magnitude and sign of the membrane potential for the K(+)-valinomycin system have no effect on Ca2+ transport regardless of value of absolute Na+ concentration inside and outside the vesicles. Depolarization of membrane vesicles does not interfere with the Na(+)-driven active Ca2+ transport into the sarcolemma which is dependent on the energy of the Na+ gradient. Using calibration curves, it was shown that the physiologically significant (6-fold) Na+ gradient increases Ca2+ concentration in the intravesicular volume from 100 to 160-170 microM. Ac active potential-independent Ca2+ transport through the smooth muscle sarcolemma requires about one third (0.3 kcal/mol) of the Na+ gradient; energy the remainder is dissipated. It is concluded that in smooth muscles the Na+ gradient can provide the active transsarcolemmal transport of Ca2+.  相似文献   

8.
An inward-directed H+ gradient markedly stimulated lactate uptake in rabbit intestinal brush-border membrane vesicles, and uphill transport against a concentration gradient could be demonstrated under these conditions. Uptake of lactate was many-fold greater in the presence of a H+ gradient than in the presence of a Na+ gradient. Moreover, there was no evidence for uphill transport of lactate in the presence of a Na+ gradient. The H+-gradient-dependent stimulation of lactate uptake was not due to the effect of a H+-diffusion potential. The uptake process in the presence of a H+ gradient was saturable [Kt (concn. giving half-maximal transport) for lactate 12.7 +/- 4.5 mM] and was inhibited by many monocarboxylates. It is concluded that a H+ gradient, not a Na+ gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.  相似文献   

9.
Transport of monosaccharides in kidney-cortex cells   总被引:5,自引:4,他引:1  
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25 degrees was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S](i)) and extracellular ([S](o)) glucose concentrations was increased by 0.4mm-phlorrhizin and 0.3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S](i)/[S](o) fell below 1.0 only at [S](o) higher than 0.5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: K(m) 1.16mm; V(max.) 4.5mumoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0.1mm-2,4-dinitrophenol, 0.4mm-phlorrhizin and by the absence of external Na(+). 6. The kinetic parameters of galactose entry into the cells were: K(m) 1.5mm; V(max) 10mumoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0 degrees , was inhibited by 0.4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na(+)-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na(+)-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

10.
Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  相似文献   

11.
Zhang W  Kaback HR 《Biochemistry》2000,39(47):14538-14542
The temperature dependence of lactose active transport, efflux down a concentration gradient, and equilibrium exchange were analyzed in right-side-out membrane vesicles from Escherichia coli containing wild-type lactose permease and mutant Glu325 --> Ala. With respect to uphill transport and efflux down a concentration gradient, both of which involve H(+) symport, Arrhenius plots with wild-type permease exhibit a discontinuity at 18-19 degrees C with a 7-8-fold decrease in activation energy above the phase transition. For equilibrium exchange, which does not involve H(+) symport, the change in activation energy is much less pronounced (2-3-fold) than that observed for active transport or efflux. Strikingly, mutant Glu325 --> Ala, which catalyzes equilibrium exchange as well as wild-type permease but is defective in all translocation reactions that involve net H(+) translocation, exhibits no change whatsoever in activation energy. The findings are consistent with the conclusion that the primary effect of the lipid phase transition is to alter coupling between substrate and H(+) translocation rather than the conformational change(s) responsible for translocation across the membrane.  相似文献   

12.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294-298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

13.
Uphill transport induced by counterflow   总被引:6,自引:2,他引:6       下载免费PDF全文
1. In a membrane transport system containing a mobile carrier with affinities for two substrates a concentration gradient with respect to one of the substrates under certain conditions is able to induce an "uphill" transport (against the concentration gradient) of the other. 2. In a kinetic treatment quantitative conditions for such a "flow-induced uphill transport" and some of its characteristics are derived. 3. Experimentally the uphill transport of labelled glucose induced by a concentration gradient for mannose or unlabelled glucose is demonstrated in the human red cell. 4. It is shown that the flow-induced uphill transport is a feature characteristic for mobile carrier systems only and is not to be expected in systems in which the substrate is bound to a fixed membrane component ("adsorption membrane"), although such a system may yield identical transport kinetics. Also with respect to Ussing's flux ratio the two systems are different, the adsorption membrane meeting Ussing's criterion, the carrier membrane not. 5. It is concluded that the transport system in the human red cells must contain a mobile carrier, identical for glucose and mannose.  相似文献   

14.
To explain how hydrostatic pressure differences between tubule lumen and interstitium modulate isotonic reabsorption rates, we developed a model of NaCl and water flow through paracellular pathways of the proximal tubule. Structural elements of the model are a tight junction membrane, an intercellular channel whose walls transport NaCl actively at a constant rate, and a basement membrane. Equations of change were derived for the channel, boundary conditions were formulated from irreversible thermodynamics, and a pressure-area relationship typical of thin-walled tubing was assumed. The boundary value problem was solved numerically. The principal conclusions are: 1) channel NaCl concentration must remain within a few mOsm of isotonic values for reabsorption rates to be modulated by transtubular pressure differences known to affect this system: 2) basement membrane and channel wall parameters determine reabsorbate tonicity; tight junction parameters affect the sensitivity of reabsorption to transmural pressure; 3) channel NaCl concentration varies inversely with transmural pressure difference; this concentration variation controls NaCl diffusion through the tight junction; 4) modulation of NaCl diffusion through the tight junction controls the rate of isotonic reabsorption; modulation of water flow can increase sensitivity to transmural pressure; 5) no pressure-induced change in permeability of the tight junction or basement membrane is needed for pressure to modulate reabsorption; and 6) system performance is indifferent to the distribution of active transport sites, to the numerical value of the compliance function, and to the relationship between lumen and cell pressures.  相似文献   

15.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

16.
All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular membrane transport and actin growth and contraction on the tension gradient, and discuss possible ‘tank tread’ flow at ventral and dorsal surfaces.  相似文献   

17.
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

18.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

19.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

20.
B Persson  P D Roepe  L Patel  J Lee  H R Kaback 《Biochemistry》1992,31(37):8892-8897
Lys319, which is on the same face of putative helix X as His322 and Glu325 in the lactose permease of Escherichia coli, has been replaced with Leu by oligonucleotide-directed, site-specific mutagenesis. Although previous experiments suggested that the mutation does not alter permease activity, we report here that K319L permease is unable to catalyze active lactose accumulation or lactose efflux down a concentration gradient. The mutant does catalyze facilitated influx down a concentration gradient at a significant rate; however, the reaction occurs without concomitant H+ translocation. The mutant also catalyzes equilibrium exchange at about 50% of the wild-type rate, but it exhibits poor counterflow activity. Finally, flow dialysis and photoaffinity labeling experiments with p-nitrophenyl alpha-D-galactopyranoside indicate that K319L permease probably has a markedly decreased affinity for substrate. The alterations described are not due to diminished levels of the mutated protein in the membrane, since immunological studies reveal comparable amounts of permease in wild-type and K319L membranes. It is proposed that Lys319, like Arg302, His322, and Glu325, plays an important role in active lactose transport, as well as substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号