共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of chemical oscillations on membrane transport systems with mobile carriers is investigated. If dynamic asymmetry occurs so that conditions on only one side of the membrane oscillate, a type of active transport can occur. For example, permeant can be transported from region 1 where its time-average concentration is low to region 2 where time-average permeant concentration is higher when the latter concentration oscillates. No additional driving force beyond dynamic asymmetry is necessary for such active transport to occur. Fluctuations in any quantity which influences the boundary carrier-permeant complex concentration in a nonlinear fashion can alter the behavior of the membrane transport system. 相似文献
2.
Multiple drug resistance can form in bacteria by functioning the membrane transport systems, responsible for release of antibacterial compounds from the cell into the environment. These transport mechanisms activated in the majority of cases by energy of proton transmembrane gradient are presented by solitary membrane transporting proteins and by functionally related transporter groups, periplasma proteins, and external membrane porines. Many bacterial drug transporters can bind and transfer a number of structurally heterogeneous substrates. Drug transporters known today have different origin and primary physiological functions. The genetic system of transporter type drug resistance is as a rule characterized by a cluster structure and related to mobile genetic elements. Transport mechanisms of drug resistance create an extra adaptation potential of microorganisms under conditions of selective pressure. 相似文献
3.
4.
Estela Snchez De Jimnez Victoria E. Valles M. De La Paz De Len G. Sobern 《The Biochemical journal》1965,97(3):892-896
1. Starvation for 3 days causes membrane damage of the rat erythrocyte manifested by several alterations. The adenosine-triphosphatase activity is decreased but that of acetylcholinesterase is not affected. 2. The ouabain-sensitive adenosine-triphosphatase activity increases at the expense of the non-sensitive enzyme moiety. 3. The Rb(+) uptake is not altered but the galactose transport is accelerated by the stated experimental conditions. 4. The modifications induced by starvation do not recover on re-feeding. 相似文献
5.
6.
Active transport of calcium ions has been demonstrated in inside-out membrane vesicles from Mycobacterium phlei mediated by respiratory linked substrates as well as by ATP hydrolysis. The uptake of calcium exhibited an apparent Km of 80 microM and V of 16.6 nmol calcium uptake x min-1 x mg protein-1. A fortyfold concentration gradient for calcium ions was calculated for both the ATP-induced and the respiration-induced transport of calcium. Removal of coupling-factor-latent ATPase resulted in the complete loss of ATP-driven Ca2+ transport whereas the respiration-driven uptake was reduced by 40-50%. The uptake of calcium was inhibited by the proton conducting ionophores carbonylcyanide m-chlorophenylhydrazone and Gramicidin-D. The accumulated calcium was freely exchangeable with external calcium and was rapidly released by the addition of inhibitors of energy transduction, proton-translocating uncouplers or the ionophore A23187. The uptake of the weak base, methylamine, upon the oxidation of respiratory-linked substrates or the hydrolysis of ATP showed the generation of a protein gradient (inside acidic) which was partially collapsed on the addition of calcium ions. These results suggest that a Ca2+/H+ antiport mechanism may be responsible for the transport of calcium. 相似文献
7.
P Bhattacharyya 《Journal of bacteriology》1975,123(1):123-127
Membrane vesicles isolated from cells of bacillus subtilis W23 accumulate manganese in the presence of an energy source. The artificial electron donor system ascorbate and phenazine methosulfate or reduced nicotinamide adenine dinucleotide and phenazine methosulfate can supply the energy for the uptake. D-Lactate in the presence or absence of phenazine methosulfate would not support manganese accumulation. Anaerobiosis, cyanide, m-chlorophenyl carbonylcyanide hydrozone, valinomycin, gramicidin, and p-hydroxy-mercuribenzoate inhibit the uptake. The inhibition by p-hydroxymercuribenzoate is prevented by excess dithiothreitol. Potassium fluoride or sodium arsenate has no effect on the uptake. The manganese transport system in the B. subtilis vesicles exhibits Michaelis-Menten kinetics with a Km of 13 muM and a Vmax of 1.7 nmol/min per mg (dry weight) of membranes. The uptake of manganese is specific and is not inhibited by 0.1 mM CaCL2 or Mgcl2. 相似文献
8.
9.
J E Lever 《The Journal of biological chemistry》1978,253(7):2081-2084
Inorganic phosphate accumulated 8-fold in plasma membrane vesicles derived from simian virus 40-transformed 3T3 mouse fibroblasts when a NaCl gradient (external greater than internal) was artificially imposed across the membrane. Preincubation with Na+ or addition of monensin markedly reduced phosphate accumulation. Na+-stimulated phosphate transport was not affected by addition of either dicarboxylic acids, antimycin A, or ouabain and persisted after addition of proton ionophores. The coupling of phosphate transport to Na+ gradients was pH-dependent, with maximal stimulation by Na+ below pH 7. These findings suggest that monovalent phosphate anion moves across the plasma membrane in co-transport with sodium ion. 相似文献
10.
11.
12.
In this paper, the authors investigate the membrane transport of aqueous non-electrolyte solutions in a single-membrane system with the membrane mounted horizontally. The purpose of the research is to analyze the influence of volume flows on the process of forming concentration boundary layers (CBLs). A mathematical model is provided to calculate dependences of a concentration polarization coefficient (ζ s ) on a volume flux (J vm ), an osmotic force (Δπ) and a hydrostatic force (ΔP) of different values. Property ζ s ?=?f(J vm ) for J vm ?>?0 and for J vm ?≈?0 and property ζ s ?=?f(ΔC 1) are calculated. Moreover, results of a simultaneous influence of ΔP and Δπ on a value of coefficient ζ s when J vm ?=?0 and J vm ?≠?0 are investigated and a graphical representation of the dependences obtained in the research is provided. Also, mathematical relationships between the coefficient ζ s and a concentration Rayleigh number (R C ) were studied providing a relevant graphical representation. In an experimental test, aqueous solutions of glucose and ethanol were used. 相似文献
13.
Inside-out vesicles prepared with basolateral plasma membranes from rat kidney proximal tubular cells can accumulate Na+ actively in two ways. Mode 1, which is K+-independent, is ouabain-insensitive and is inhibited by furosemide and mode 2, which is K+-dependent, is inhibited by ouabain and is insensitive to furosemide. The presence of Mg2+ and ATP in the incubation medium is essential for both modes of Na+ uptake to proceed and in both cases, the nucleotide is hydrolyzed during the process. These results are consistent with the idea of the existence, in these membranes, of two Na+ pumps: one, which can work in the absence of K+ (Na+ pump) and another, which needs K+ to work (Na+ + K+ pump). 相似文献
14.
15.
1. Thermostable membrane vesicles which were capable of active transport of alanine dependent on either respiration or an artificial membrane potential were isolated from the thermophilic aerobic bacterium PS3. 2. Uptake of alanine was dependent on the oxidation of ascorbate-phenazine methosulfate or on generated or exogenous NADH, but succinate and malate failed to drive the uptake. The optimum temperature for respiration-driven uptake of alanine was 45 to 60 degrees. 3. Potassium ion-loaded vesicles were prepared by incubating vesicles at 55 degrees in 0.5 M potassium phosphate. The addition of valinomycin elicited rapid and transient uptake of alanine under the test conditions. Uptake of alanine in response to valinomycin was progressively enhanced by the addition of dicylohexylcarbodiimide, but was completely abolished in the presence of a proton conductor or synthetic permeable cation. The effect of dicyclohexylcarbodiimide was dependent on its concentration and was maximal at a concentration of 0.4 mM. 4. The proton permeability of membrane vesicles was reduced by the addition of dicyclohexylcarbodiimide. A small but significant difference was found in the initial rates of proton uptake in the presence of dicyclohexylcarbodiimide with and without alanine. The results suggest that protons alanine are transported simultaneously in a stoichiometric ratio of 1 : 1. 5. The uptake of alanine was also driven by a pH gradient induced by an instantaneous pH drop in a suspension of alkali-loaded vesicles. Thus, alanine accumulation was driven not only by an electrical potential but also by a pH gradient. 6. Addition of ATP resulted in the inhibition of alanine uptake dependent on artificial membrane potential. ATP hydrolysis by membrane ATPase created a membrane potential which was inside-positive, and this might decrease the effective membrane potential (generated by K+ efflux mediated by valinomycin) available to drive alanine uptake. 相似文献
16.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed. 相似文献
17.
18.
Active membranes for active transport 总被引:4,自引:0,他引:4
L Gross 《Journal of theoretical biology》1967,15(3):298-306
19.
David B. Knaff 《Photosynthesis research》1986,10(3):507-514
Phototrophic bacteria utilize light-driven, cyclic electron flow to pump protons out of their cytoplasm, creating an electrochemical proton gradient, H+, outside acid and positive. These bacteria exchange external protons for internal cations (Na+, K+ and Ca+2), allowing the cells to maintain a nearly constant internal pH while maintaining the electrical component of H+. Na+/H+ exchange also establishes an electrochemical Na+ gradient. Phototrophic bacteria are able to utilize these electrochemical gradients as energy sources for the uptake of a wide variety of metabolites (e.g., sugars, organic acids and amino acids) via metabolite/cation symports. 相似文献
20.