首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant human interleukin-2 (rIL-2) produced in Escherichia coli possesses a free thiol group at Cys-125 and a disulfide linkage between Cys-58 and Cys-105, as in the case for natural human interleukin-2. Treatment of rIL-2 with 200 mM dithiothreitol resulted in the cleavage of the Cys-58-Cys-105 disulfide bond. The reduced form of rIL-2 thus obtained retained only 10% of the in vitro biological activity of the native form, as measured by the ability to stimulate the growth of an IL-2-dependent mouse natural killer cell line, NKC3. Far-uv circular dichroism studies indicated that the cleavage of the disulfide bond results in a decrease of alpha-helix content. Near-uv circular dichroism studies suggested that the native molecule is folded into a rigid tertiary structure, while the reduced form showed a spectrum similar to that of rIL-2 denatured in the presence of 6 M guanidine.HCl. The once-reduced molecule was readily reoxidized in the presence of 10 microM Cu2+ to form the native molecule with full biological activity. These results strongly demonstrate that the Cys-58-Cys-105 disulfide linkage in the IL-2 molecule is essential for constructing a rigid and biologically active form of IL-2.  相似文献   

2.
IL-2R on activated lymphocytes contain the Tac protein. As part of an effort to characterize this molecule, we examined the structure-activity relationship for each of its 12 Cys residues. A preliminary map of intramolecular disulfide bonding was derived by analysis of cystine-linked enzymatic fragments of the Tac protein. The results indicated that disulfide bonds linked Cys-3 with Cys-147, Cys-131 with Cys-163, and Cys-28,30 with Cys-59,61. The contribution of the Cys residues to an active protein conformation was tested by site-specific mutagenesis, followed by expression of the modified molecules in murine L cells. The results indicated that Cys-192 and -225 could be replaced without affecting ligand binding. In contrast, modification of any of the other 10 Cys residues, either singly or in combinations corresponding to the predicted disulfide bonds, greatly reduced the ability of the corresponding protein to bind IL-2 or either of two mAb (anti-Tac and 7G7/B6) which recognize the Tac protein. Each of the latter mutations also interfered with the molecule's post-translational modification and cell-surface expression. Consistent with these findings, transfection of the L cells with vectors containing truncated Tac cDNA inserts resulted in secretion of Tac fragments capable of ligand binding when the polypeptide chains terminated after Cys-163 (the 10th Cys residue in the full length molecule), but resulted in inactive fragments of Tac which were poorly secreted when they terminated before Cys-163. These findings emphasize the remarkable sensitivity of the active conformation of the Tac molecule to each of the postulated intramolecular disulfide bonds.  相似文献   

3.
The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.  相似文献   

4.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

5.
Human wild-type and Cys-less P-glycoproteins were expressed in Pichia pastoris and purified in high yield in detergent-soluble form. Both ran on SDS gels as a single 140-kDa band in the presence of reducing agent and showed strong verapamil-stimulated ATPase activity in the presence of added lipid. The wild type showed spontaneous formation of higher molecular mass species in the absence of reducing agent, and its ATPase was activated by dithiothreitol. Oxidation with Cu(2+) generated the same higher molecular mass species, primarily at 200 and approximately 300 kDa, in high yield. Cross-linking was reversed by dithiothreitol and prevented by pretreatment with N-ethylmaleimide. Using proteins containing different combinations of naturally occurring Cys residues, it was demonstrated that an inhibitory intramolecular disulfide bond forms between Cys-431 and Cys-1074 (located in the Walker A sequences of nucleotide-binding sites 1 and 2, respectively), giving rise to the 200-kDa species. In addition, dimeric P-glycoprotein species ( approximately 300 kDa) form by intermolecular disulfide bonding between Cys-431 and Cys-1074. The ready formation of the intramolecular disulfide between Cys-431 and Cys-1074 establishes that the two nucleotide-binding sites of P-glycoprotein are structurally very close and capable of intimate functional interaction, consistent with available information on the catalytic mechanism. Formation of such a disulfide in vivo could, in principle, underlie a regulatory mechanism and might provide a means of intervention to inhibit P-glycoprotein.  相似文献   

6.
As the most abundant glycoprotein component of pulmonary surfactant, SP-A (Mr = 30,000-36,000) plays a central role in the organization of phospholipid bilayers in the alveolar air space. SP-A, isolated from lung lavage, exists in oligomeric forms (N = 6, 12, 18, ...), mediated by collagen-like triple helices and intermolecular disulfide bonds. These protein-protein interactions, involving the amino-terminal domain of SP-A, are hypothesized to facilitate the alignment of surfactant lipid bilayers into unique tubular myelin structures. SP-A reorganization of surfactant lipid was assessed in vitro by quantitating the calcium-dependent light scattering properties of lipid vesicle suspensions induced by SP-A. Accelerated aggregation of unilamellar vesicles required SP-A and at least 3 mM free calcium. The initial rate of aggregation was proportional to the concentration of canine SP-A over lipid:protein molar ratios ranging from 200:1 to 5000:1. Digestion with bacterial collagenase or incubation with dithiothreitol (DTT) completely blocked lipid aggregation activity. Both treatments decreased the binding of SP-A to phospholipids. The conditions used in the DTT experiments (10 mM DTT, nondenaturing Tris buffer, 37 degrees C) resulted in the selective reduction and 14C-alkylation of the intermolecular disulfide bond involving residue 9Cys, whereas the four cysteines found in the noncollagenous domain of SP-A were inefficiently alkylated with [14C]-iodoacetate. HPLC analysis of tryptic SP-A peptides revealed that these four cysteine residues participate in intramolecular disulfide bond formation (138Cys-229Cys and 207Cys-221Cys). Our data demonstrate the importance of the quaternary structure (triple helix and intermolecular disulfide bond) of SP-A for the aggregation of unilamellar phospholipid vesicles.  相似文献   

7.
Native interleukin-2 (IL-2) contains three cysteines; two exist in a disulfide bridge (Cys-58 and Cys-105) and the third Cys-125 is a free sulfhydryl. In the presence of 6 M guanidine hydrochloride at alkaline pH, IL-2 is converted into three isomers. Each isomer represents one of the three possible disulfide-linked forms that can be generated from three cysteines. These three isomers were resolved on a C4 reverse-phase HPLC system. The identity of each of the three forms was determined by carboxymethylation of the free cysteines in each isomer with [3H]iodoacetic acid followed by determination of the labelled cysteines by tryptic peptide mapping. Tryptic peptide mapping of the more predominant of the two scrambled peaks showed it to be the Cys-105-S-S-Cys-125 linked form of IL-2. A Ser-125 construction of IL-2, which lacks a free cysteine, did not scramble under these conditions. These experiments demonstrate the utility of reverse-phase HPLC in studies of protein folding and disulfide bond structure.  相似文献   

8.
L J Perry  R Wetzel 《Biochemistry》1986,25(3):733-739
We have introduced an intramolecular disulfide bond into T4 lysozyme and have shown this molecule to be significantly more stable than the wild-type molecule to irreversible thermal inactivation [Perry, L.J., & Wetzel, R. (1984) Science (Washington, D.C.) 226, 555-557]. Wild-type T4 lysozyme contains two free cysteines, at positions 54 and 97, and no disulfide bonds. By directed mutagenesis of the cloned T4 lysozyme gene, we replaced Ile-3 with Cys. Oxidation in vitro generated an intramolecular disulfide bond; proteolytic mapping showed this bond to connect Cys-3 to Cys-97. While this molecule exhibited substantially more stability against thermal inactivation than wild type, its stability was further enhanced by additional modification with thiol-specific reagents. This and other evidence suggest that at basic pH and elevated temperatures Cys-54 is involved in intermolecular thiol/disulfide interchange with the engineered disulfide, leading to inactive oligomers. Mutagenic replacement of Cys-54 with Thr or Val in the disulfide-cross-linked variant generated lysozymes exhibiting greatly enhanced stability toward irreversible thermal inactivation.  相似文献   

9.
Expression of recombinant proteins in Escherichia coli often results in the formation of insoluble inclusion bodies, In case of expression of eukaryotic proteins containing cysteine, which may form disulfide bonds in the native active protein, often nonnative inter- and intramolecular disulfide bonds exist in the inclusion bodies. Hence, several methods have been developed to isolate recombinant eukaryotic polypeptides from inclusion bodies, and to generate native disulfide bonds, to get active proteins. This article summarizes the different steps and methods of isolation and renaturation of eukaryotic proteins containing disulfide bonds, which have been expressed in E. coli as inclusion bodies, and shows which methods originally developed for studying the folding mechanism of naturally occurring proteins have been successfully adapted for reactivation of recombinant eukaryotic proteins. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

11.
To determine the modes of three disulfide linkages in the heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli, we synthesized STh(6-18), which consists of 13 amino acid residues and has the same intramolecular disulfide linkages as native STh [(1985) FEBS Lett. 181, 138-142], by stepwise and selective formation of disulfide bonds using different types of removable protecting groups for the Cys residues. Synthesis of the peptide with different modes of disulfide bond formation provided three peptides consistent with standard STh(6-18) in their physicochemical and biological properties, thereby indicating that the disulfide bonds in STh(6-18) are Cys-Cys-Glu-Leu-Cys-Cys-Asn-Pro-Ala-Cys-Thr-Gly-Cys.  相似文献   

12.
To gain insight into the molecular architecture of the cytoplasmic surface of G protein-coupled receptors, we have developed a disulfide cross-linking strategy using the m3 muscarinic receptor as a model system. To facilitate the interpretation of disulfide cross-linking data, we initially generated a mutant m3 muscarinic receptor (referred to as m3'(3C)-Xa) in which most native Cys residues had been deleted or substituted with Ala or Ser (remaining Cys residues Cys-140, Cys-220, and Cys-532) and in which the central portion of the third intracellular loop had been replaced with a factor Xa cleavage site. Radioligand binding and second messenger assays showed that the m3'(3C)-Xa mutant receptor was fully functional. In the next step, pairs of Cys residues were reintroduced into the m3'(3C)-Xa construct, thus generating 10 double Cys mutant receptors. All 10 mutant receptors contained a Cys residue at position 169 at the beginning of the second intracellular loop and a second Cys within the C-terminal portion of the third intracellular loop, at positions 484-493. Radioligand binding studies and phosphatidylinositol assays indicated that all double Cys mutant receptors were properly folded. Membrane lysates prepared from COS-7 cells transfected with the different mutant receptor constructs were incubated with factor Xa protease and the oxidizing agent Cu(II)-(1,10-phenanthroline)3, and the formation of intramolecular disulfide bonds between juxtaposed Cys residues was monitored by using a combined immunoprecipitation/immunoblotting strategy. To our surprise, efficient disulfide cross-linking was observed with 8 of the 10 double Cys mutant receptors studied (Cys-169/Cys-484 to Cys-491), suggesting that the intracellular m3 receptor surface is characterized by pronounced backbone fluctuations. Moreover, [35S]guanosine 5'-3-O-(thio)triphosphate binding assays indicated that the formation of intramolecular disulfide cross-links prevented or strongly inhibited receptor-mediated G protein activation, suggesting that the highly dynamic character of the cytoplasmic receptor surface is a prerequisite for efficient receptor-G protein interactions. This is the first study using a disulfide mapping strategy to examine the three-dimensional structure of a hormone-activated G protein-coupled receptor.  相似文献   

13.
VEGF(121), the 121-amino acid form of vascular endothelial growth factor is a homodimer with nine cysteine residues per monomer. While three intramolecular and two intermolecular disulfide bonds have been mapped, the state of the ninth cysteine, Cys116, is not known. In this study, we determined that human VEGF(121) contains a third interchain disulfide bond between Cys116 of each monomer. We also isolated a VEGF(121) variant with two extra cysteines bound to each Cys116. No evidence was found for the exsistence of Cys116 in the reduced state. In fact, selective reduction of the Cys116 interchain disulfide bond yielded an unstable VEGF(121) molecule, which reoxidized quickly. Biological activities of VEGF(121) Cys116 variants were assessed. The oxidative state of Cys116 has no effect on binding or proliferation activities but may be important for overall stability of the molecule.  相似文献   

14.
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond.  相似文献   

15.
Fibrillins are the major constituents of extracellular microfibrils. How fibrillin molecules assemble into microfibrils is not known. Sequential extractions and pulse-chase labeling of organ cultures of embryonic chick aortae revealed rapid formation of disulfide-cross-linked aggregates containing fibrillin-1. These results demonstrated that intermolecular disulfide bond formation is an initial step in the assembly process. To identify free cysteine residues available for intermolecular cross-linking, small recombinant peptides of fibrillin-1 harboring candidate cysteine residues were analyzed. Results revealed that the first four cysteine residues in the unique N terminus form intramolecular disulfide bonds. One cysteine residue (Cys(204)) in the first hybrid domain of fibrillin-1 was found to occur as a free thiol and is therefore a good candidate for intermolecular disulfide bonding in initial steps of the assembly process. Furthermore, evidence indicated that the comparable cysteine residue in fibrillin-2 (Cys(233)) also occurs as a free thiol. These free cysteine residues in fibrillins are readily available for intermolecular disulfide bond formation, as determined by reaction with Ellman's reagent. In addition to these major results, the cleavage site of the fibrillin-1 signal peptide and the N-terminal sequence of monomeric authentic fibrillin-1 from conditioned fibroblast medium were determined.  相似文献   

16.
M H Chau  J W Nelson 《Biochemistry》1992,31(18):4445-4450
Apamin is being studied as a model for the folding mechanism of proteins whose structures are stabilized by disulfide bonds. Apamin consists of 18 amino acid residues and forms a stable structure consisting of a C-terminal alpha-helix and two reverse turns. This structure is stabilized by two disulfide bonds connecting Cys-1 to Cys-11 and Cys-3 to Cys-15. We used glutathione and dithiothreitol as reference thiols to measure the stabilities of the two disulfide bonds as a function of urea concentration and temperature in order to understand what contributes to the stability of the native structure. The results demonstrate modest contributions from secondary structure to the overall stability of the two disulfide bonds. The equilibrium constants for disulfide bond formation between the fully reduced peptide and the native structure with two disulfide bonds at 25 degrees C and pH 7.0 are 0.42 M2 using glutathione and 2.7 x 10(-5) using dithiothreitol. The equilibrium constant decreases by a factor of approximately 4 in 8 M urea and decreases by a factor of 3 between 0 and 60 degrees C. At least three one-disulfide intermediates are found at low concentrations in the equilibrium mixture. Using glutathione, the equilibrium constants for forming the one-disulfide intermediates with respect to the reduced peptide are approximately 0.025 M. The second disulfide bond forms with an equilibrium constant of approximately 17 M. Thus, apamin folding is very cooperative, but the native structure is only modestly stabilized by urea- or temperature-denaturable secondary structure.  相似文献   

17.
Prochymosin contains three disulfide bonds linking Cys45 to Cys50, Cys206 to Cys210, and Cys250 to Cys283. To analyze the disulfide bonding pattern between domain sequences in the recombinant prochymosin molecule solubilized from inclusion bodies by 8 M urea (designated as solubilized prochymosin), a simple peptide mapping method was established. This process consists of thiol alkylation, cleavage with cyanogen bromide, diagonal electrophoresis on polyacrylamide gel, and N-terminal sequencing. By using this procedure it was found that Cys45 and Cys50 located in the N-terminal domain are not mispaired with the cysteine residues, located in the C-terminal domain, in the solubilized wild-type prochymosin and its mutants. This result implies that Cys45 and Cys50, the partners of a native disulfide, are restricted in some ordered structures existing in inclusion bodies and remaining after solubilization. These native structural elements act as folding nuclei to initiate and facilitate correct refolding. The strategy of preserving the native-like structures including native disulfide in the solubilized inclusion bodies to enhance renaturation efficiency may be applicable to other recombinant proteins.Both authors contributed equally to this work  相似文献   

18.
Studies of structure-activity relationships of human interleukin-2   总被引:4,自引:0,他引:4  
Human interleukin-2 (IL-2) has 3 cysteine residues; cysteines 58 and 105 form an intramolecular disulfide bridge, whereas cysteine 125 has a free sulfhydryl group. In this study, site-specific mutagenesis has been used to modify the cysteine residues of recombinant Escherichia coli-derived IL-2 (rIL-2) to evaluate the functional structure of IL-2. Substitution or deletion of cysteine 105 disrupted the disulfide bridge and yielded a mutant protein which was 8-10 times less active than wild type rIL-2. A similar modification at position 58, however, reduced the activity of rIL-2 by more than 250-fold. Although substitution of serine for cysteine 125 did not affect IL-2 activity, deletion of cysteine 125 or deletion of amino acids in the vicinity of this cysteine yielded mutant proteins with little, if any, activity. These results indicate that the protein structure in the vicinity of both positions 58 and 125 is more critical than that close to position 105. These findings may provide a clue to the understanding of the functional structure of human IL-2.  相似文献   

19.
IL-2 has three cysteine residues. The cysteines at positions 58 and 105 of active IL-2 form an intramolecular disulfide bond while that at position 125 remains as a free form. To evaluate the importance of correct disulfide bond, mutant proteins (muteins) that have triple and double substitutions of cysteines with alanines, namely A58/105/125 and A58/125, were made by polymerase chain reaction method respectively. Thymidine incorporation assay on CTLL-2 cells showed that although these two muteins were only 0.5-2.0% as potent as that of wild type IL-2, they were 50-200 fold more active than A58, a mutein that has substitution of cysteine at position 58 with alanine. Binding inhibition study showed that the relative affinity of muteins A58/125 and A58/105/125 for high affinity IL-2 receptors was 5-25 fold higher than that of A58. These results suggest that the dramatic decrease in the activity of mutein A58 may result from the formation of an incorrect disulfide bond between the cysteines at positions 105 and 125.  相似文献   

20.
Unlike other fatty acid-binding proteins, cutaneous (epidermal) fatty acid-binding proteins contain a large number of cysteine residues. The status of the five cysteine residues in rat cutaneous fatty acid-binding protein was examined by chemical and mass-spectrometric analyses. Two disulfide bonds were identified, between Cys-67 and Cys-87, and between Cys-120 and Cys-127, though extent of formation of the first disulfide bond was rather low in another preparation. Cys-43 was free cysteine. Homology modeling study of the protein indicated the close proximity of the sulfur atoms of these cysteine pairs, supporting the presence of the disulfide bonds. These disulfide bonds appear not to be directly involved in fatty acid-binding activity, because a recombinant rat protein expressed in Escherichia coli in which all five cysteines are fully reduced showed fatty acid-binding activity as examined by displacement of a fluorescent fatty acid analog by long-chain fatty acids. However, the fact that the evolutionarily distant shark liver fatty acid-binding protein also has a disulfide bond corresponding to the one between Cys-120 and Cys-127, and that fatty acid-binding proteins play multiple roles suggests that some functions of cutaneous fatty acid-binding protein might be regulated by the cellular redox state through formation and reduction of disulfide bonds. Although we cannot completely exclude the possibility of oxidation during preparation and analysis, it is remarkable that a protein in cytosol under normally reducing conditions appears to contain disulfide bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号