首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide excision repair (NER) is the only mechanism in humans to repair UV-induced DNA lesions such as pyrimidine (6-4) pyrimidone photoproducts and cyclobutane pyrimidine dimers (CPDs). In response to UV damage, the ataxia telangiectasia mutated and Rad3-related (ATR) kinase phosphorylates and activates several downstream effector proteins, such as p53 and XPA, to arrest cell cycle progression, stimulate DNA repair, or initiate apoptosis. However, following the completion of DNA repair, there must be active mechanisms that restore the cell to a prestressed homeostatic state. An important part of this recovery must include a process to reduce p53 and NER activity as well as to remove repair protein complexes from the DNA damage sites. Since activation of the damage response occurs in part through phosphorylation, phosphatases are obvious candidates as homeostatic regulators of the DNA damage and repair responses. Therefore, we investigated whether the serine/threonine wild-type p53-induced phosphatase 1 (WIP1/PPM1D) might regulate NER. WIP1 overexpression inhibits the kinetics of NER and CPD repair, whereas WIP1 depletion enhances NER kinetics and CPD repair. This NER suppression is dependent on WIP1 phosphatase activity, as phosphatase-dead WIP1 mutants failed to inhibit NER. Moreover, WIP1 suppresses the kinetics of UV-induced damage repair largely through effects on NER, as XPD-deficient cells are not further suppressed in repairing UV damage by overexpressed WIP1. Wip1 null mice quickly repair their CPD and undergo less UV-induced apoptosis than their wild-type counterparts. In vitro phosphatase assays identify XPA and XPC as two potential WIP1 targets in the NER pathway. Thus WIP1 may suppress NER kinetics by dephosphorylating and inactivating XPA and XPC and other NER proteins and regulators after UV-induced DNA damage is repaired.  相似文献   

2.
3.
Nucleotide-excision repair (NER) is the most versatile mechanism of DNA repair, recognizing and dealing with a variety of helix-distorting lesions, such as the UV-induced photoproducts cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) photoproducts. We investigated the influence of an anticancer drug, STI571, on the efficacy of NER in removing UV-induced DNA damage. STI571 is used mostly in the treatment of chronic myeloid leukemia and inhibits activity of the BCR/ABL oncogenic tyrosine kinase, which is a hallmark of this disease. NER activity was examined in the BCR/ABL-expressing cell lines K562 and BV173 of myeloid and lymphoid origin, respectively, as well as in CCRF-CEM cells, which do not express BCR/ABL. A murine myeloid parental 32D cell line and its counterpart transfected with the BCR/ABL gene were also tested. NER activity was assessed in the cell extracts by use of an UV-irradiated plasmid as a substrate and by a modified single-cell gel electrophoresis (comet) assay on UV-treated nucleoids. Additionally, quantitative PCR was performed to evaluate the efficacy of the removal of UV-induced lesions from the p53 gene by intact cells. Results obtained from these experiments indicate that STI571 decreases the efficacy of NER in leukemic cells expressing BCR/ABL. Therefore, STI571 may overcome the drug resistance associated with increased DNA repair in BCR/ABL-positive leukemias.  相似文献   

4.
Fos is an essential component of the mammalian UV response.   总被引:26,自引:5,他引:21       下载免费PDF全文
  相似文献   

5.
6.
When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl-3H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. UVr-1 cells were also more refractory to 4-nitroquinoline 1-oxide (4NQO), but the activity of DNA repair synthesis induced by 4NQO in UVr-1 cells was much the same as in the RSa cells. Both N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) sensitivity and MNNG-induced DNA repair synthesis activity in UVr-1 cells were similar to that of RSa cells. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity.  相似文献   

7.
A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

8.
DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids.  相似文献   

9.
Ultraviolet inactivation of transforming Bacillus subtilis markers was studied with the aid of an eightfold auxotrophic recipient and its excision-repair-deficient derivative. The results allow the following conclusions. (i) Wild-type B. subtilis cells are able to repair approx. 80% of the UV-induced lesions causing inactivation of transforming activity in UV-sensitive recipients; (ii) Saturating amounts of donor DNA increase the apparent marker sensitivities. This phenomenon is most pronounced in transformation of UV-sensitive recipients; (iii) various markers are inactivated to different degrees, both when assayed on the wild-type as well as on the UV-sensitive strain; (iv) Various markers are repaired to different degrees in the wild-type recipient.  相似文献   

10.
11.
12.
13.
14.
Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.  相似文献   

15.
The effect of caffeine on UV-irradiated Chinese hamster cells in vitro was studied on the cellular and molecular levels. Caffeine (1 mM) was shown to decrease the colony-forming ability and the frequencies of spontaneous and UV-induced mutations in Chinese hamster cells. The effect of caffeine in reducing the frequency of UV-induced mutations was demonstrated only if caffeine was present in the culture medium during the first post-irradiation cell division. Using alkaline sucrose gradient centrifugation, both parental and newly synthesized DNA in UV-irradiated and unirradiated cells were studied in the presence and absence of caffeine. Caffeine affected the sedimentation profile of DNA synthesized in UV-irradiated cells but not in unirradiated cells. Caffeine had no apparent effect on the incorporation of [3H]-thymidine into DNA of control or UV-irradiated cells, nor on the small amount of excision of UV-induced pyrimidine dimers. These results may be interpreted by a hypothesis that caffeine inhibits a certain S-phase specific, post-replication, dark-repair mechanism. The hamster and perhaps other rodent cells exposed to low doses of UV are capable of DNA replication, by-passing the non-excised pyrimidine dimers. This postulated repair process probably involves de novo DNA synthesis to seal the gaps in the nascent strand. This repair may be also responsible for the enzymatic production of mutations.  相似文献   

16.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

17.
Ultraviolet light (UV light) induces helix distorting DNA lesions that pose a block to replicative DNA polymerases. Recovery from this replication arrest is reportedly impaired in nucleotide excision repair (NER)-deficient xeroderma pigmentosum (XP) fibroblasts and primary fibroblasts lacking functional p53. These independent observations suggested that the involvement of p53 in the recovery from UV-induced replication arrest was related to its role in regulating the global genomic subpathway of NER (GG-NER). Using primary human fibroblasts, we confirm that the recovery from UV-induced replication arrest is impaired in cells lacking functional p53 and in primary XP fibroblasts derived from complementation groups A or C (XP-A and XP-C) that are defective in GG-NER. Surprisingly, DNA synthesis recovered normally in GG-NER-deficient XP complementation group E (XP-E) cells that carry mutations in the p53 regulated DNA repair gene DDB2 and are specifically defective in the repair of cyclobutane pyrimidine dimers (CPD) but not pyrimidine (6-4) pyrimidone photoproducts. Disruption of p53 in these XP-E fibroblasts prevented the recovery from UV-induced replication arrest. Therefore, the roles of p53 and GG-NER in the recovery from UV-induced replication are separable and DDB2-independent. These results further indicate that primary human fibroblasts expressing functional p53 efficiently replicate DNA containing CPD whereas p53-deficient cells do not, consistent with a role for p53 in permitting translesion DNA synthesis of these DNA lesions.  相似文献   

18.
The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.  相似文献   

19.
Cultured cells of placental mammals (including human skin fibroblasts) as well as fresh cornea tissue from oxen have been UV (254 nm)-irradiated and either kept dark or exposed to photoreactivating light (wavelengths >375 nm) only prior to extraction of their DNA. The latter was added to an in vitro photorepair system consisting of UV-irradiated DNA from Haemophilus influenzae and yeast-photoreactivating enzyme, illuminated with broad-spectrum white fluorescent light. The extent of competitive inhibition of the in vitro photorepair of Haemophilus-DNA, resulting from the addition of mammalian DNA, has been taken as a measure of mammalian DNA lesions capable of reacting with photoreactivating enzyme. In most cases the amount of these DNA lesions was reduced if the UV-irradiated mammalian cells had been light-exposed prior to DNA extraction, indicating photoenzymatic repair of up to 90% of the lesions. DNA damage by the photoreactivating light itself was observed at varying degrees in human cells, where this effect presumably masks some of the photorepair.  相似文献   

20.
An increase in the amount of membrane-bound DNA was found in B. subtilis cells with UV-induced DNA repair synthesis as compared to untreated cells. It was shown that DNA repair synthesis occurred in DNA membrane complexes (DMC) formed during UV-irradiation. UV-induced formation of DMC was observed in cells of wild type strains which were capable of repairing damaged DNA but not in a mutant defective in DNA-polymerase I. It was demonstrated that DNA-polymerase I is located on the membrane of B. subtilis cells. This suggested a participation of DNA-polymerase I in binding of the chromosome to the membrane in UV-irradiated cells. UV-induced DMC did not dissociate when the cells were treated with inhibitors of DNA-gyrase. It, therefore, was qualitatively different from the DMC found during replication. The mechanisms of binding of the damaged DNA to the membrane in UV-irradiated cells of B. subtilis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号