首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AnAgrobacterium rhizogenes-mediated procedure for transformation of papaya (Carica papaya) was developed. Transgenic plants were obtained from somatic embryos that spontaneously formed at the base of transformed roots, induced from leaf discs infected withA. rhizogenes. Transformation was monitored by autonomous growth of roots and somatic embryos, resistance to kanamycin, β-glucuronidase activity (GUS), and Southern hybridization analysis. Over one-third of the infected leaf explants produced transformed roots with GUS activity, from which 10% spontaneously produced somatic embryos. Histological analysis ofA. rhizogenes-transformed embryos showed that they have an altered symmetry between the shoot apex and the root meristem when compared to somatic embryos induced with hormone treatment from control explants. Transgenic papaya plants containingA. rhizogenes rol genes were more sensitive to auxins, developed wrinkled leaves, and grew slower than nontransformed plants.  相似文献   

2.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

3.
Cho HJ  Farrand SK  Noel GR  Widholm JM 《Planta》2000,210(2):195-204
Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and β-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54–95% of the cotyledon explants on MXB selective medium containing 200 μg ml−1 kanamycin and 500 μg ml−1 carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4–5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode. Received: 13 July 1999 / Accepted: 8 August 1999  相似文献   

4.
Tomilov A  Tomilova N  Yoder JI 《Planta》2007,225(5):1059-1071
Parasitic plants in the Orobanchaceae invade roots of neighboring plants to rob them of water and nutrients. Triphysaria is facultative parasite that parasitizes a broad range of plant species including maize and Arabidopsis. In this paper we describe transient and stable transformation systems for Triphysaria versicolor Fischer and C. Meyer. Agrobacterium tumefaciens and Agrobacterium rhizogenes were both able to transiently express a GUS reporter in Triphysaria seedlings following vacuum infiltration. There was a correlation between the length of time seedlings were conditioned in the dark prior to infiltration and the tissue type transformed. In optimized experiments, nearly all of the vacuum infiltrated seedlings transiently expressed GUS activity in some tissue. Calluses that developed from transformed tissues were selected using non-destructive GUS staining and after several rounds of in vivo GUS selection, we recovered uniformly staining GUS calluses from which roots were subsequently induced. The presence and expression of the transgene in Triphysaria was verified using genomic PCR, RT PCR and Southern hybridizations. Transgenic roots were also obtained by inoculating A. rhizogenes into wounded Triphysaria seedlings. Stable transformed roots were identified using GUS staining or fluorescent microscopy following transformation with vectors containing GFP, dsRED or EYFP. Transgenic roots derived from both A. tumefaciens and A. rhizogenes transformations were morphologically normal and developed haustoria that attached to and invaded lettuce roots. Transgenic roots also remained competent to form haustoria in response to purified inducing factors. These transformation systems will allow an in planta assessment of genes predicted to function in plant parasitism. Alexey Tomilov and Natalya Tomilova made an equal contribution in the paper.  相似文献   

5.
A transformation protocol, based on co-inoculation with two strains of Agrobacterium, Agrobacterium tumefaciens LBA4404 and A. rhizogenes 15834 containing a binary vector with the GUS gene, was established for the induction of transgenic hairy roots from sugar beet (Beta vulgaris L.) explants. It resulted in marked improvement in the formation of hairy roots and the integration of the binary vector T-DNA into the host genome. Of 250 inoculated sugar beet hypocotyls, 84% yielded hairy roots 5–7 days after inoculation, of which 70% were co-transformed with the binary vector T-DNA. To determine stable expression of alien genes in hairy roots, the nematode resistance gene Hs1 pro-1 was used as a reporter gene. In addition, molecular marker analysis was applied to monitor stable incorporation of a translocation from the wild beet B. procumbens. The molecular analysis and the nematode (Heterodera schachtii) resistance test in vitro demonstrated that the genomic structure and the expression of the Hs1 pro-1 -mediated nematode resistance were well-maintained in all hairy root cultures even after repeated sub-culture. Received: 25 November 1997 / Revision received: 26 May 1998 / Accepted: 15 June 1998  相似文献   

6.
An efficient protocol for shoot regeneration and genetic transformation was applied to root segments of a new Lotus corniculatus L. cultivar Bokor. The shoots, that regenerated on root segments, were inoculated with Agrobacterium rhizogenes A4M70GUS, and produced hairy roots, which on media with 0.2 mg dm−3 benzylaminopurine, regenerated shoots. After rooting and acclimation, the transformed plants were planted in the experimental field. Their morphological traits were compared to controls. No signs of the rol genes phenotype were present. The transformants were significantly taller than controls, while there were no significant differences in the leaf area. The glucuronidase activity and the presence of uidA gene was demonstrated in transformed plants of T0 and in seedlings of T1 generations. It is concluded that A. rhizogenes could be a vector of choice for the transfer of desirable genes into the bird's foot trefoil genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Genetically transformed roots and calli were induced from leafsegments of grapevine (Vitis vinifera L. cv. Koshusanjaku) afterco-cultivation with wild-type Agrobacterium rhizogenes strains,but plant regenera tion from them was not achieved. On the otherhand, transgenlc grapevine plants were obtained via somaticembryogenesis after co-cultivation of embryogenic calli withan engineered A. rhizogenes strain including both the neomycinphosphotransferase II (NPT II) and the ß-glucuronidase(GUS) genes, followed by selection of secondary embryos forkanamycin resistance. All these plants showed GUS gene expressionrevealed by histochemical assay. Southern blot analysis revealedthe stable integration of the GUS cording region in their genome.Transformants containing Ri T-DNA exhibited various phenotypes:most of them showed a typical Ri-transformed phenotype suchas wrinkled leaves, while the others looked normal. Key words: Agrobacterium rhizogenes, grapevine, transgenic plants, Vitis vinifera  相似文献   

8.
Susceptibility of Mexican cacti to Agrobacterium rhizogenes was evaluated in 65 species of 22 genera. Stem discs taken from in vitro cultured plants were inoculated with Agrobacterium rhizogenes A4 agropine-type strain that contains the wild RiA4 plasmid and the binary vector pESC4 with the nptII and gus genes. Hairy roots were produced directly from wounds, or starting from calli generated on the wounded surface, in 34 of the evaluated species. The frequency of hairy roots formation, the number of roots per explant and its growth rates were variable among the tested species. In the 31 remaining species the production of transformed roots was not observed under the conditions used in these experiments. Histochemical detection of β-glucuronidase (GUS) activity demonstrated the expression of this foreign gene in the hairy roots. PCR analyses demonstrated the presence of the rolB and nptII genes in the DNA of the transformed roots. The patterns of alkaloid-like compounds obtained by thin layer chromatography in some of the tested species were qualitatively similar between the transformed and non-transformed roots.  相似文献   

9.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

10.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

11.
Hairy roots of Rhamnus fallax Boiss. were induced using Agrobacterium rhizogenes strain A4M70GUS. The culture established on Woody plant media (WPM) showed a typical hairy root phenotype: rapid growth, reduced apical dominance and root plagiotropism. Seven clones of R. fallax were selected on the basis of their differences in colour and the root branching. The growth of hairy root culture, measured through gain in fresh mass, was done under 16-h photoperiod or in the dark. An increase in anthraquinone (AQ) content was obtained in clones with yellow and less branched roots, like clone 1 [16.43 mg g−1(d.m.)] and clone 7 [14.21 mg g−1(d.m.)], compared with other analysed transformed and non-transformed tissue. This study presents the first report of successful transformation of any species from family Rhamnaceae by A. rhizogenes and analysis of AQ production in transformed tissue.  相似文献   

12.
Production of stable transgenic plants is one factor that limits rapid evaluation of tissue specific transgene expression. To hasten the assessment of transgenes in planta, we evaluated the use of chimeric soybean seedlings expressing transgenic products in roots. Tap roots from four-day old seedlings (cultivars ‘Jack’ and KS4704) were excised and hairy roots were induced from hypocotyls via Agrobacterium rhizogenes-mediated transformation. Inoculated hypocotyls were screened on a MS-based medium containing either 200 mg/L kanamycin or 20 mg/L hygromycin. Beta-glucuronidase (GUS) activity assay indicated that highest GUS expression was observed in hypocotyls exposed to a 4-d pre-inoculation time, a neutral pH (7.0) for the co-cultivation medium. A 170-bp of the Fib-1 gene and 292-bp of the Y25C1A.5 gene fragments, both related to nematode reproduction and fitness, were cloned independently into pANDA35HK vector using a Gateway cloning strategy. The resulting RNAi constructs of the genes fragments were transformed into soybean using the chimeric hairy root system and evaluated for its effect on soybean cyst nematode (Heterodera glycines) fecundity. Confirmation of transformation was attained by polymerase chain reaction and Southern-blot analysis, and some potential for suppression of H. glycines reproduction was detected for the two constructs. This method takes on average four weeks to produce chimeric plants ready for transgene analysis.  相似文献   

13.
14.
We examined the effects of genetic transformation by Agrobacterium rhizogenes on the production of tylophorine, a phenanthroindolizidine alkaloid, in the Indian medicinal plant, Tylophora indica. Transformed roots induced by the bacterium grew in axenic culture and produced shoots or embryogenic calli in the absence of hormone treatments. However, hormonal treatment was required to regenerate shoots in root explants of wild type control plants. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes, which include, short internodes, small and wrinkled leaves, more branches and numerous plagiotropic roots. Plants regenerated from transformed roots showed increased biomass accumulation (350–510% in the roots and 200–320% in the whole plants) and augmented tylophorine content (20–60%) in the shoots, resulting in a 160–280% increase in tylophorine production in different clones grown in vitro.  相似文献   

15.
16.
Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
An efficient procedure is described for transformation of calli of the monocotyledonous plant Alstroemeria by Agrobacterium rhizogenes. Calli were co-cultivated with A. rhizogenes strain A13 that harbored both a wild-type Ri-plasmid and the binary vector plasmid pIG121Hm, which included a gene for neomycin phosphotransferase II (NPTII) under the control of the nopaline synthase (NOS) promoter, a gene for hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a gene for -glucuronidase (GUS) with an intron fused to the CaMV 35S promoter. Inoculated calli were plated on medium that contained cefotaxime to eliminate bacteria. Four weeks later, transformed cells were selected on medium that contained 20 mg L–1 hygromycin. A histochemical assay for GUS activity revealed that selection by hygromycin was complete after eight weeks. The integration of the T-DNA of the Ri-plasmid and pIG121Hm into the plant genome was confirmed by PCR. Plants derived from transformed calli were produced on half-strength MS medium supplemented with 0.1 mg L–1 GA3 after about 5 months of culture. The presence of the gusA, nptII, and rol genes in the genomic DNA of regenerated plants was detected by PCR and Southern hybridization, and the expression of these transgenes was verified by RT-PCR.  相似文献   

17.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

18.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Susceptibility of C. rubrum to Agrobacterium-mediated transformation was demonstrated by inoculating the petioles of in vitro grown plants with A. rhizogenes strain A4M70GUS. Hairy roots were produced in 8 % of explants. They were isolated and maintained on plant growth regulator-free solid or liquid half-strength Murashige and Skoog medium for two years. Hairy root fresh mass increased 30 — 90 folds when grown in liquid medium, which was superior to solid medium, where most of the hairy roots produced calli. When these calli were grown on medium supplemented with 0.5 mg dm-3 thidiazuron, embryo-like structures were obtained. Transgenic status of long-term callus and hairy root cultures was confirmed by histochemical GUS assay, by PCR specific to the uidA, rolA&B and ags genes and by Southern hybridization.  相似文献   

20.
Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号