首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional mRNA can be generated by RNA polymerase III.   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

2.
3.
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.  相似文献   

4.
5.
Evidence is presented for a new pathway participating in anterior neural development. It was found that IGF binding protein 5 (IGFBP-5), as well as three IGFs expressed in early embryos, promoted anterior development by increasing the head region at the expense of the trunk in mRNA-injected Xenopus embryos. A secreted dominant-negative type I IGF receptor (DN-IGFR) had the opposite effect. IGF mRNAs led to the induction of ectopic eyes and ectopic head-like structures containing brain tissue. In ectodermal explants, IGF signals induced anterior neural markers in the absence of mesoderm formation and DN-IGFR inhibited neural induction by the BMP antagonist Chordin. Thus, active IGF signals appear to be both required and sufficient for anterior neural induction in Xenopus.  相似文献   

6.
Polyadenylated mRNA has been purified from a variety of human and mouse cell sources. These preparations are actively translated in the wheat germ cell-free system but have only poor ability to stimulate the nuclease-treated reticulocyte lysate. The translation of endogenous and exogenous globin mRNA is strongly inhibited by the poly(A)+ RNA preparations in reticulocyte lysates. Both polysomal and non-polysomal RNA have similar effects but poly(A)+ RNA is almost 2000-fold more inhibitory than poly(A)-RNA on a weight basis. The inhibition is abolished in the presence a high concentration of poly(I).poly(C). Analysis of endogenous eIF-2 in the lysate reveals that the subunit becomes extensively phosphorylated in the presence of the inhibitory poly(A)+ RNA. Prolonged incubation of lysate with poly(A)+ RNA also causes some nucleolytic degradation of polysomal globin mRNA. These characteristics suggest that some eukaryotic cell mRNAs contain regions of double-stranded structure which are sufficiently extensive to activate translational control mechanisms in the reticulocyte lysate.  相似文献   

7.
8.
While oxidative stress can induce a heat shock response, the primary signals that initiate activation have not been identified. To identify such signals, HepG2 and V 79 cells were exposed to menadione, a compound that redox-cycles to generate superoxide. The oxidative stress generated by menadione resulted in oxidation of protein thiols in a dose-dependent manner. This was followed by protein destabilization and denaturation, as determined by differential scanning calorimetry of whole cells. To directly evaluate the effect of non-native disulfides on protein conformation, Ca2+-ATPase, isolated from rabbit sarcoplasmic reticulum, was chemically modified to contain non-native intermolecular or glutathione (GHS)-mixed disulfides. Differential scanning calorimetry profiles and 1-anilinonaphthalene-8-sulfonic acid fluorescence indicated that formation of non-native disulfides produced protein destabilization, denaturation, and exposure of hydrophobic domains. Cellular proteins shown to contain oxidized thiols formed detergent-insoluble aggregates. Cells treated with menadione exhibited activation of HSF-1, accumulated Hsp 70 mRNA, and increased synthesis of Hsp 70. This work demonstrates that formation of physiologically relevant, non-native intermolecular and GSH-mixed disulfides causes proteins to destabilize, unfold such that hydrophobic domains are exposed, and initiate a signal for induction of the heat shock response. J. Cell. Physiol. 171:143–151, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
10.
Messenger RNA extracted from the livers of normal, phenobarbital-treated, and trans-stilbene oxide-treated rats was translated in a mRNA-dependent protein-synthesizing system. Immunoprecipitation of the translation products by antibodies against the Ya and Yc subunits of glutathione S-transferase detected two polypeptides of molecular weights 23,500 and 25,000. Subsequently, a clone containing glutathione S-transferase sequences was identified from a rat liver double-stranded cDNA library that had been prepared by homopolymeric tailing and cloning into the Pst I site of pBR322. Confirmation of the identity of the clone was obtained by recloning the 550-bp insert DNA into the phage vector M13 and utilizing the single strand recombinant phage DNA in specific hybrid selection of mRNA followed by translation and immunoprecipitation with antibodies to the Ya and Yc subunits. This recombinant phage, M13GST94, was also utilized in a new technique to synthesize 32P-labeled cDNA specific to the glutathione S-transferase insert DNA that was used subsequently in RNA excess solution hybridization to determine the relative concentration of glutathione S-transferase mRNA. Phenobarbital treatment resulted in a 3.2-fold increase in glutathione S-transferase mRNA over levels found in control rats, while trans-stilbene oxide increased glutathione S-transferase mRNA levels 5.7-fold. The DNA sequence of the clone was determined and utilized to propose a partial amino acid sequence.  相似文献   

11.
Stimulation of normal human foreskin fibroblasts with platelet-derived growth factor (PDGF) was inhibited by the addition of the synthetic double-stranded RNA polyinosinic-polycytidylic acid (poly-I:C) as measured by incorporation of 3H-thymidine (3H-TdR). Single-stranded polycytidylic or polyinosinic acid had no effect. Double-stranded RNA is an inducer of interferon-beta (IFN-beta) in fibroblasts. On the mRNA level, an expression of IFN-beta 2 but not of IFN-beta 1 was seen after addition of PDGF and/or poly-I:C. The inhibition of PDGF-induced mitogenesis was completely blocked by an antiserum to IFN-beta. Poly-I:C did not interfere with PDGF binding to its receptor, nor did it block protein synthesis, indicating that the inhibition is not due to a nonspecific toxic effect of the double-stranded RNA but rather is mediated by IFN-beta. The present study implies that the IFN-beta system in fibroblasts is a very potent autocrine inhibitory pathway.  相似文献   

12.
13.
In Eubacteria, de novo translation of some internal cistrons may be inefficient or impossible unless the 5' neighboring cistron is also translated (translational coupling). Translation reinitiation is an extreme case of translational coupling in which translation of a message depends entirely on the presence of a nearby terminating ribosome. In this work, the characteristics of mRNA cis-elements inducing the reinitiation process in Escherichia coli have been investigated using a combinatorial approach. A number of novel translational reinitiation sequences (TRSs) were thus identified, which show a wide range of reinitiation activities fully dependent on a translational coupling event and unrelated to the presence/absence of secondary structure or mRNA stability. Moreover, some of the isolated TRSs are similar to intercistronic sequences present in the E. coli genome.  相似文献   

14.
The components of the renin-angiotensin system have been colocalized in many tissues suggesting that local generation of angiotensin II can regulate blood flow in specific organs or tissues. This in combination with the fact that proliferating tissues require angiogenesis and increased blood flow to develop have led us to study the relationship of angiotensinogen mRNA production to cell cycle regulation. Reuber H35 (H4IIE) cells were growth-arrested by serum deprivation. Cells were then treated with 10% fetal calf serum, depleted serum, or insulin. Insulin and serum were equally potent at increasing beta-actin mRNA levels, depressing angiotensinogen mRNA levels, and in increasing [3H]methyl thymidine incorporation. The half-maximal insulin effect occurred at 5 x 10(-9) M. Insulin-like growth factor I and II had no effect on any of the parameters measured. 12-O-tetradecanoyl phorbol 13-acetate (TPA) also induced beta-actin mRNA, decreased angiotensinogen mRNA, and caused an increase in [3H]methyl thymidine incorporation. The TPA effects were of shorter duration and of lower magnitude than those caused by insulin or serum. Inactivation of protein kinase C by preincubation with TPA did not block the insulin response. TPA has been shown to induce angiogenesis in vitro. Thus, these studies suggest that inhibition of angiotensinogen gene activity may be part of the proliferative or angiogenic process. Our experimental data may provide a model for further experimental dissection of the biochemical steps involved in angiogenesis.  相似文献   

15.
Analysis of cloned human genomic loci homologous to the small nuclear RNA U1 established that such sequences are abundant and dispersed in the human genome and that only a fraction represent bona fide genes. The majority of genomic loci bear defective gene copies, or pseudogenes, which contain scattered base mismatches and in some cases lack the sequence corresponding to the 3' end of U1 RNA. Although all of the U1 genes examined to date are flanked by essentially identical sequences and therefore appear to comprise a single multigene family, we present evidence for the existence of at least three structurally distinct classes of U1 pseudogenes. Class I pseudogenes had considerable flanking sequence homology with the U1 gene family and were probably derived from it by a DNA-mediated event such as gene duplication. In contrast, the U1 sequence in class II and III U1 pseudogenes was flanked by single-copy genomic sequences completely unrelated to those flanking the U1 gene family; in addition, short direct repeats flanked the class III but not the class II pseudogenes. We therefore propose that both class II and III U1 pseudogenes were generated by an RNA-mediated mechanism involving the insertion of U1 sequence information into a new chromosomal locus. We also noted that two other types of repetitive DNA sequences in eucaryotes, the Alu family in vertebrates and the ribosomal DNA insertions in Drosophila, bore a striking structural resemblance to the classes of U1 pseudogenes described here and may have been created by an RNA-mediated insertion event.  相似文献   

16.
Modulation of c-kit mRNA and protein by hemopoietic growth factors.   总被引:4,自引:0,他引:4       下载免费PDF全文
We examined the effects of various hemopoietins on c-kit mRNA and protein expression. Interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor, and erythropoietin, but not IL-4, down-regulated levels of c-kit mRNA expressed by mast cells and stem cell progenitors. The effect of IL-3 was dominant and independent of cell growth or viability and was paralleled by reduced expression in c-kit protein. These observations indicate that regulation of c-kit expression is closely interlinked with the molecular mechanisms triggered by erythropoietin, IL-3, and granulocyte-macrophage colony-stimulating factor.  相似文献   

17.
As ordinarily measured, the SOS repair of damaged DNA by Weigle reactivation appears to be more effective for double-stranded (ds) than for single-stranded (ss) DNA bacteriophages. A complicating feature, which is usually not considered, is the possibility of DNA-protein cross-linking of ssDNA to the viral capsid, which would conceivably be an extraneous source of nonreactivable lesions. This idea is supported in studies of phage S13 by the observation that photoreactivation more than doubles when naked ssDNA is substituted for encapsidated ssDNA as the UV target. The same effect was observed for Weigle reactivation; there was little, if any, difference in the reactivation of ssDNA and dsDNA when naked DNA was irradiated. Moreover, in a uvrA mutant, ssDNA actually had the advantage; Weigle reactivation was then more than twice as effective for ssDNA as for dsDNA. It is also shown that when a suitable measure of Weigle mutagenesis is used, there is no convincing evidence that dsDNA is mutagenized more effectively than ssDNA.  相似文献   

18.
Previous studies have indicated that nitric oxide is involved in the lysis of pancreatic islet cells by inflammatory macrophages. Here we show that the incubation of islet cells with chemical NO-donors leads to cell lysis in a concentration and time dependent way. Islet cell death could be prevented by nicotinamide and 3-aminobenzamide, which are known to inhibit ADP-ribosylation, while several scavengers of oxygen radicals, N-acetylcysteine, dihydrolipoic acid, dimethylthiourea and citiolone, provided no protection.  相似文献   

19.
20.
Having previously demonstrated that the insulin-like growth factors (IGFs) induce expression of the myogenin gene, we have now extended our investigation of the induction of myogenesis by the IGFs to a second member of the MyoD family, myf-5. This is the only myogenesis gene other than myogenin expressed early in the differentiation of L6 myoblasts, so its regulation was of particular interest because of our observations on myogenin. In contrast to myogenin, myf-5 mRNA was detectable in proliferating myoblasts, but the steady state levels of myf-5 mRNA fell strikingly for 48 h after the cells were switched to low serum medium containing IGF-II in both murine cell lines and myoblasts cultured from human muscle. In spite of this decrease, translation of myf-5 mRNA appeared essential during the early stages of stimulation of myogenesis by the IGFs; an antisense oligodeoxynucleotide complementary to the first five codons of myf-5 blocked the increase in myogenin mRNA and inhibited morphological (cell fusion) and biochemical (creatine kinase elevation) aspects of myogenesis. We conclude that expression of myf-5 is essential for the initial induction of myogenin by the IGFs, but that subsequent elevation of myogenin expression is independent of myf-5, possibly resulting from autoinduction of the myogenin gene. The functional significance of the dramatic decrease in myf-5 mRNA levels during differentiation is not obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号