首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The roles of ultraviolet-B (UV) radiation in the immunogenicity of human cancer cells have not been fully studied. We have investigated the effects of UV radiation on metastatic melanoma and renal cell carcinoma cells with regard to MHC antigen expression and the ability to induce cytotoxic T lymphocyte (CTL) activity in peripheral blood mononuclear cells (PBMC) or tumor-infiltrating lymphocytes (TIL) against untreated autologous tumor cells. UV radiation respectively decreased or increased MHC class I expression of freshly isolated tumor cells or cultured tumor cells, and also decreased MHC class I expression of starved cultured tumor cells. It increased the ability of both freshly isolated and cultured tumor cells to induce CTL activity from PBMC against untreated autologous tumor cells. UV-irradiated subclones that were more susceptible to CTL lysis were more potent for CTL induction from TIL than either an untreated parental clone or a UV-irradiated subclone that was resistant to CTL lysis. In summary, UV radiation increased the ability of tumor cells to induce CTL activity without a corresponding effect on MHC antigen expression.This work was supported in part by a grant CA47891 from the National Cancer Institute, USA, a grant-in-aid of the comprehensive 10-years strategy for cancer control from ministry of a Health and Welfare, Japan, and the Ishibashi Research Fund, Japan  相似文献   

2.
HLA-E are nonclassical MHC molecules with poorly characterized tissue distribution and functions. Because of their capacity to bind the inhibitory receptor, CD94/NKG2A, expressed by NK cells and CTL, HLA-E molecules might play an important role in immunomodulation. In particular, expression of HLA-E might favor tumor cell escape from CTL and NK immunosurveillance. To address the potential role of HLA-E in melanoma immunobiology, we assessed the expression of these molecules ex vivo in human melanoma biopsies and in melanoma and melanocyte cell lines. Melanoma cell lines expressed no or low surface, but significant intracellular levels of HLA-E. We also report for the first time that some of them produced a soluble form of this molecule. IFN-gamma significantly increased the surface expression of HLA-E and the shedding of soluble HLA-E by these cells, in a metalloproteinase-dependent fashion. In contrast, melanocyte cell lines constitutively expressed HLA-E molecules that were detectable both at the cell surface and in the soluble form, at levels that were poorly affected by IFN-gamma treatment. On tumor sections, a majority of tumor cells of primary, but a low proportion of metastatic melanomas (30-70 and 10-20%, respectively), expressed HLA-E. Finally, HLA-E expression at the cell surface of melanoma cells decreased their susceptibility to CTL lysis. These data demonstrate that HLA-E expression and shedding are normal features of melanocytes, which are conserved in melanoma cells of primary tumors, but become dependent on IFN-gamma induction after metastasis. The biological significance of these findings warrants further investigation.  相似文献   

3.
CD8+ T-lymphocytes recognize peptides in the context of major histocompatibility complex (MHC) class I antigens. Upon activation, these cells differentiate into effector cytotoxic T lymphocytes (CTL) and no longer require formal antigen presentation by professional antigen presenting cells (APC). Subsequently, any cell expressing MHC class I/cognate peptide can stimulate CTL. Using TIL specific for a melanoma antigen-derived peptide, IMDQVPFSV (g209 2M), we sought to determine whether these CTL could present peptide to each other. Our findings demonstrate that peptide presentation of the g209 2M peptide epitope by TIL is comparable to conventional methods of using T2 cells as APC. We report here that CTL are capable of self-presentation of antigenic peptide to neighboring CTL resulting in IFN-gamma secretion, proliferation, and lysis of peptide-loaded CTL. These results demonstrate that human TIL possess both APC functions as well as cytotoxic functions and that this phenomenon could influence CTL activity elicited by immunotherapy.  相似文献   

4.
Human uveal melanoma arises in an immune privileged ocular environment in which both adaptive and innate immune effector mechanisms are suppressed. Uveal melanoma is the most common intraocular tumor in adults and is derived from tissues in the eye that produce macrophage migration-inhibitory factor (MIF), a cytokine that has recently been demonstrated to produce immediate inhibition of NK cell-mediated lytic activity. Although NK cell-mediated lysis of uveal melanomas is inhibited in the eye, melanoma cells that disseminate from the eye are at risk for surveillance by NK cells. Moreover, uveal melanoma cells demonstrate a propensity to metastasize to the liver, an organ with one of the highest levels of NK activity in the body. Therefore, we speculated that uveal melanomas produced MIF as a means of escaping NK cell-mediated lysis. Accordingly, seven primary uveal melanoma cell lines and two cell lines derived from uveal melanoma metastases were examined for their production of MIF. MIF was detected in melanoma culture supernatants by both ELISA and the classical bioassay of macrophage migration inhibition. Melanoma-derived MIF inhibited NK cell-mediated lysis of YAC-1 and uveal melanoma cells. Cell lines derived from uveal melanoma metastases produced approximately twice as much biologically active MIF as cultures from primary uveal melanomas. Inhibition of NK cell-mediated killing by uveal melanoma-derived MIF was specifically inhibited in a dose-dependent manner by anti-MIF Ab. The results suggest that human uveal melanoma cells maintain a microenvironment of immune privilege by secreting active MIF that protects against NK cell-mediated killing.  相似文献   

5.
The immune response to embryonic stem (ES) cells is still poorly understood. In this study, we addressed the adaptive cellular immune response to undifferentiated and differentiated ES cells infected with lymphocytic choriomeningitis virus (LCMV), a vertically transmitted pathogen in mice and humans. In contrast to the prevailing view, we found that undifferentiated and differentiated murine ES cells express MHC class I molecules, although at low levels. When cocultured with LCMV-infected ES cells, syngeneic but not allogeneic LCMV-specific CTL secrete IFN-gamma. Strikingly, LCMV-specific CTL do not efficiently kill LCMV-infected ES cells. ES cells showed high-level expression of the serine protease inhibitor 6, an endogenous inhibitor of the CTL-derived cytotoxic effector molecule granzyme B. Down-regulation of serpin-6 by RNA interference sensitized ES cells for CTL-induced cell death. The results of this study suggest that LCMV-infected murine ES cells present viral Ags and are recognized by LCMV-specific CTL in a MHC class I-restricted manner, yet resist CTL-mediated lysis through high-level expression of serine protease inhibitor 6.  相似文献   

6.
The dynamics of the interaction between Cytotoxic T Lymphocytes (CTL) and tumor cells has been addressed in depth, in particular using numerical simulations. However, stochastic mathematical models that take into account the competitive interaction between CTL and tumors undergoing immunoediting, a process of tumor cell escape from immunesurveillance, are presently missing. Here, we introduce a stochastic dynamical particle interaction model based on experimentally measured parameters that allows to describe CTL function during immunoediting. The model describes the competitive interaction between CTL and melanoma cell nodules and allows temporal and two-dimensional spatial progression. The model is designed to provide probabilistic estimates of tumor eradication through numerical simulations in which tunable parameters influencing CTL efficacy against a tumor nodule undergoing immunoediting are tested. Our model shows that the rate of CTL/tumor nodule productive collisions during the initial time of interaction determines the success of CTL in tumor eradication. It allows efficient cytotoxic function before the tumor cells acquire a substantial resistance to CTL attack, due to mutations stochastically occurring during cell division. Interestingly, a bias in CTL motility inducing a progressive attraction towards a few scout CTL, which have detected the nodule enhances early productive collisions and tumor eradication. Taken together, our results are compatible with a biased competition theory of CTL function in which CTL efficacy against a tumor nodule undergoing immunoediting is strongly dependent on guidance of CTL trajectories by scout siblings. They highlight unprecedented aspects of immune cell behavior that might inspire new CTL-based therapeutic strategies against tumors.  相似文献   

7.
Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.  相似文献   

8.
9.
Although CTL and polymorphic, classical MHC class I molecules have well defined roles in the immune response against tumors, little is currently known regarding the participation of nonpolymorphic, nonclassical MHC class I in antitumor immunity. Using an MHC class I-deficient melanoma as a model tumor, we demonstrate that Q9, a murine MHC class Ib molecule from the Qa-2 family, expressed on the surface of tumor cells, protects syngeneic hosts from melanoma outgrowth. Q9-mediated protective immunity is lost or greatly diminished in mice deficient in CTL, including beta(2)-microglobulin knockout (KO), CD8 KO, and SCID mice. In contrast, the Q9 antitumor effects are not detectably suppressed in CD4 KO mice with decreased Th cell activity. Killing by antitumor CTL in vitro is Q9 specific and can be blocked by anti-Q9 and anti-CD8 Abs. The adaptive Q9-restricted CTL response leads to immunological memory, because mice that resist the initial tumor challenge reject subsequent challenges with less immunogenic tumor variants and show expansion of CD8(+) T cell populations with an activated/memory CD44(high) phenotype. Collectively, these studies demonstrate that a MHC class Ib molecule can serve as a restriction element for antitumor CTL and mediate protective immune responses in a syngeneic setting.  相似文献   

10.
We are exploring cell-based vaccines as a treatment for the 50% of patients with large primary uveal melanomas who develop lethal metastatic disease. MHC II uveal melanoma vaccines are MHC class I+ uveal melanoma cells transduced with CD80 genes and MHC II genes syngeneic to the recipient. Previous studies demonstrated that the vaccines activate tumor-specific CD4+ T cells from patients with metastatic uveal melanoma. We have hypothesized that vaccine potency is due to the absence of the MHC II-associated invariant chain (Ii). In the absence of Ii, newly synthesized MHC II molecules traffic intracellularly via a non-traditional pathway where they encounter and bind novel tumor peptides. Using confocal microscopy, we now confirm this hypothesis and demonstrate that MHC II molecules are present in both the endosomal and secretory pathways in vaccine cells. We also demonstrate that uveal melanoma MHC II vaccines activate uveal melanoma-specific, cytolytic CD8+ T cells that do not lyse normal fibroblasts or other tumor cells. Surprisingly, the CD8+ T cells are cytolytic for HLA-A syngeneic and MHC I-mismatched uveal melanomas. Collectively, these studies demonstrate that MHC II uveal melanoma vaccines are potent activators of tumor-specific CD4+ and CD8+ T cells and suggest that the non-conventional intracellular trafficking pattern of MHC II may contribute to their enhanced immunogenicity. Since MHC I compatibility is unnecessary for the activation of cytolytic CD8+ T cells, the vaccines could be used in uveal melanoma patients without regard to MHC I genotype.  相似文献   

11.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

12.
In previous studies, the murine SaI (A/J derived, KkDd) sarcoma was transfected with the allogeneic MHC class I H-2Kb gene, and expressed high levels of H-2Kb antigen. Contrary to expectations, the tumor cells expressing the alloantigen (SKB3.1M tumor cells) were not rejected by autologous A/J mice. Because these results contradict the laws of transplantation immunology, the present studies were undertaken to examine the immunogenicity of SKB3.1M and SaI cells in allogeneic hosts. Similar to SKB3.1M, SaI cells are lethal in some allogeneic strains, despite tumor-host MHC class I incompatibilities. Tumor challenges of SKB3.1M and SaI cells, however induce MHC class I-specific antibodies and CTL in both tumor-resistant and -susceptible hosts. Although the tumors induce specific CTL, tumor cells are not lysed in vitro by these CTL, suggesting that the tumor cells are resistant to CTL-mediated lysis. Since growth of these tumors does not follow the classical rules of allograft transplantation, and because the tumor is not susceptible to CTL-mediated lysis, we have used Winn assays to identify the effector lymphocyte(s) responsible for SaI rejection. Depletion studies demonstrate that the effector cell is a CD4-CD8+ T lymphocyte. Collectively these studies suggest that the host's response to MHC class I alloantigens of SKB3.1M and SaI cells does not determine tumor rejection, and that effector cells other than classically defined CTL, but with the CD4-CD8+ phenotype, can mediate tumor-specific immunity.  相似文献   

13.
Melanomas from different patients have been shown to express shared tumor antigens, which can be recognized in the context of the appropriate MHC class 1 molecules by cytolytic T cells. To determine if T-cell-defined melanoma antigens are expressed on other tumors of neuroectodermal origin, four melanoma-specific cytotoxic T lymphocyte (CTL) cultures derived from tumor-infiltrating lymphocytes (TIL) were tested for lysis of a panel of 23 HLA-A2+ neuroectodermal tumor cell lines of various histologies, including retinoblastoma (1), neuroblastoma (8), neuroepithelioma (6), astrocytoma (2), neuroglioma (1), and Ewing's sarcoma (5). Low expression of MHC class I and/or ICAM-1 molecules was found on 22 of 23 neuroectodermal tumor lines, and could be enhanced by treatment with interferon (IFN). Following IFN treatment, three Ewing's sarcoma lines were lysed by at least one melanoma TIL culture, and levels of lysis were comparable to melanoma lysis by these TIL. Lysis could be inhibited by monoclonal antibodies directed against MHC class I molecules and against CD3, indicating specific immune recognition of tumor-associated antigens. None of the other neuroectodermal tumors tested were lysed by TIL, but they could be lysed by non-MHC-restricted lymphokine-activated killer cells. This demonstration of immunological cross-reactivity between melanomas and Ewing's sarcomas, two tumors of distinct histological types with a common embryonic origin, has implications for the developmental nature of these CTL-defined tumor antigens. It also raises the possibility that specific antitumor immunotherapies, such as vaccines, may be reactive against more than one form of cancer.  相似文献   

14.
Current peptide-based immunotherapies for treatment of model cancers target tumor Ags bound by the classical MHC class I (class Ia) molecules. The extensive polymorphism of class Ia loci greatly limits the effectiveness of these approaches. We demonstrate in this study that the murine nonpolymorphic, nonclassical MHC class I (class Ib) molecule Q9 (Qa-2) promotes potent immune responses against multiple syngeneic tumors. We have previously shown that ectopic expression of Q9 on the surface of class Ia-negative B78H1 melanoma led to efficient CTL-mediated rejection of this tumor. In this study, we report that surface-expressed Q9 on 3LLA9F1 Lewis lung carcinoma and RMA T cell lymphoma also induces potent antitumor CTL responses. Importantly, CTL harvested from animals surviving the initial challenge with Q9-positive 3LLA9F1, RMA, or B78H1 tumors recognized and killed their cognate tumors as well as the other cancer lines. Furthermore, immunization with Q9-expressing 3LLA9F1 or RMA tumor cells established immunological memory that enhanced protection against subsequent challenge with a weakly immunogenic, Q9-bearing melanoma variant. Collectively, the generation of cross-reactive CTL capable of eliminating multiple disparate Q9-expressing tumors suggests that this nonpolymorphic MHC class I molecule serves as a restriction element for a shared tumor Ag(s) common to lung carcinoma, T cell lymphoma, and melanoma.  相似文献   

15.
Tumor-specific cytolysis by lymphocytes infiltrating human melanomas   总被引:23,自引:0,他引:23  
Tumor infiltrating lymphocytes (TIL) were grown in IL-2 from single cell tumor suspensions of 14 human melanomas resected from 12 patients. As a function of time in culture, 4 of 14 TIL cultures eventually expressed highly specific cytolytic activity against fresh autologous melanoma targets in short term chromium release assays, failing to lyse multiple allogeneic tumors or autologous normal cells. These highly specific TIL were identified as CTL by phenotype (CD3+/CD4-/CD8+/Leu7-) and by function (lysis inhibited by antibodies directed against CD3 and MHC class I molecules). Cell separation experiments using immunomagnetic beads identified a highly tumor-specific CTL subpopulation within a nonspecific TIL culture, suggesting that the lytic activity of tumor-specific CTL may be diluted by the nonspecific killer activity present in heterogeneous TIL cultures. These studies provide evidence for specific MHC-restricted human immune responses against autologous tumor in cancer-bearing patients, and may be of importance to ongoing clinical trials using TIL in the immunotherapy of advanced malignancies.  相似文献   

16.
Mice with an established syngeneic T cell tumor (RBL5) received short term adoptive chemoimmunotherapy with CTL clone 1.B6 and murine rIFN-gamma. In comparison with treatment with either agent alone, the combination of 1.B6 and rIFN-gamma was associated with a dramatic increase in long term survival. No direct effects of rIFN-gamma on tumor cell proliferation, MHC Ag expression, or susceptibility to CTL-mediated lysis could be demonstrated to explain the prolongation of survival. However, rIFN-gamma induced a distinct increase in broad-spectrum cytolytic capacity of peritoneal exudate cells and further increased class II MHC expression on peritoneal macrophages. The explanation for enhanced adoptive chemoimmunotherapy after combined short term administration of a CTL clone and rIFN-gamma is uncertain. Potential mechanisms include direct tumor lysis by activated cells, indirect tumor lysis via sensitization to other lymphokines or monokines, improved Ag-specific activation of transferred CTL clones, and/or more effective development of de novo host anti-tumor immunity.  相似文献   

17.
CTL lines were established in vitro by stimulating patient lymphocytes with autologous melanoma cells in the presence of IL-2. Resulting CTL lines lysed autologous melanoma and failed to lyse several allogeneic melanomas or K562. The mechanism of target cell recognition by autologous tumor-specific CTL was evaluated in this system, using several CTL lines: DT6, DT105, DT141, DT166, DT169, and DT179. Autologous melanoma lysis was inhibited by W6/32, mAb directed against HLA class I Ag, but not by L243, mAb directed against HLA class II Ag. CTL from DT6, DT141, DT166, DT169, and DT179 lysed fresh and cultured allogeneic melanomas, which shared the HLA-A2 Ag, but failed to lyse allogeneic melanomas, which shared B-region or C-region Ag, or shared no HLA class I Ag. CTL from DM141 lysed DM93, which shared A2 and Bw6, but failed to lyse DM105, which shared only Bw6. DM105 CTL failed to lyse allogeneic melanomas that shared HLA-A1, or that shared B or C region Ag, but they did lyse allogeneic melanoma DM49, which expressed an A region Ag that either was A10 or was serologically cross-reactive with A10. A T cell leukemia line, three EBV transformed B cell lines, and a pancreatic cancer line, all of which expressed HLA-A2, were not lysed by DM6 or DM179 CTL. Furthermore, HLA-matched nonmelanomas failed to inhibit autologous tumor lysis in cold target inhibition assays, whereas an HLA-A2+ allogeneic melanoma, DM93, inhibited autologous tumor lysis as effectively as the autologous tumor itself. HLA-A2, and possibly other HLA-A-region Ag, appear to function in HLA-restricted recognition of shared melanoma associated Ag by CTL.  相似文献   

18.
We have investigated the primary and secondary immunity generated in vivo by a MHC class I-deficient tumor cell line that expressed CD80 (B7-1). CD80 expression enhanced primary NK cell-mediated tumor rejection in vivo and T cell immunity against secondary tumor challenge. CD80 expression enhanced primary NK cell-mediated tumor rejection, and both NK cell perforin and IFN-gamma activity were critical for the rejection of MHC class I-deficient RMA-S-CD80 tumor cells. This primary rejection process stimulated the subsequent development of specific CTL and Th1 responses against Ags expressed by the MHC class I-deficient RMA-S tumor cells. The development of effective secondary T cell immunity could be elicited by irradiated RMA-S-CD80 tumor cells and was dependent upon NK cells and IFN-gamma in the priming response. Our findings demonstrate a key role for IFN-gamma in innate and adaptive immunity triggered by CD80 expression on tumor cells.  相似文献   

19.
The role of uncultured melanoma cells in the proliferation of autologous tumor-specific cytotoxic T lymphocytes (CTLs) was investigated. Uncultured autologous tumor cells by themselves induced modest, but significant, proliferation in 10 of 13 (77%) CTL clones and in only two of nine non-CTL clones. Uncultured allogenic melanoma cells mostly failed to induce CTL proliferation. Autologous tumor-induced CTL proliferation declined with increasing age of the culture. It did not correlate with IL-2 receptor-alpha expression or was not inhibited by addition of anti-IL-2 antibody to the culture. It was inhibited by pretreatment of tumor cells with anti-MHC class II, but not -MHC class I mAb. IL-2 alone was sufficient for the potent proliferation of five of nine CTL clones. In all these five CTL clones, autologous tumor cells suppressed IL-2-induced proliferation. The remaining four CTL clones, however, required both uncultured autologous melanoma cells and IL-2 for the proliferation. IL-4 or IL-6, in particular IL-6, facilitated IL-2-induced CTL proliferation, but not their cytotoxicity. In summary, uncultured melanoma cells by themselves induced modest levels of CTL proliferation in the context of MHC class II antigens, whereas they suppressed IL-2-induced CTL proliferation in more than half of the clones.  相似文献   

20.
The importance of CD4(+) T cells in the induction of an optimal antitumor immune response has largely been attributed to their ability to provide costimulatory signals for the priming of MHC class I-restricted CD8(+) CTL. However, many reports have demonstrated a requirement for CD4(+) T cells in the effector phase of tumor rejection indicating a greater responsibility for CD4(+) T cells in controlling tumor outgrowth. We demonstrate here a critical role for CD4(+) T cells in restraining initial tumor development through the inhibition of tumor angiogenesis. Using a tumor variant that is unresponsive to IFN-gamma, we show that tumor responsiveness to IFN-gamma is necessary for IFN-gamma-dependent inhibition of tumor angiogenesis by CD4(+) T cells. These studies reveal a pivotal role for CD4(+) T cells in controlling early tumor development through inhibition of tumor angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号