首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synapse-associated proteins that are located at the postsynaptic density (PSD) have recently been shown to have a structural role at non-synaptic locations. Here, they act as adaptor proteins between neurotransmitter receptors and the microtubule- or microfilament-based motor-protein complexes that are responsible for transport to the PSD. The use of a common set of proteins that contain multiple domains for protein-protein interactions as both intracellular transport adaptors and synaptic scaffold proteins might contribute to the transport specificity and postsynaptic integration of receptors that underlie synapse formation and plasticity.  相似文献   

2.
Multiple sclerosis (MS) is a disease characterized by inflammatory demyelination and a strong neurodegenerative component. Axonal damage is characteristically detected in MS brains, although the pathogenic mechanisms are not clearly understood. Here, we discuss the importance of HDAC1 localization as one of the potential mechanisms initiating damage in demyelinating conditions. We suggest the occurrence of a two-stage mechanism of damage. The first event is a calcium-dependent HDAC1 nuclear export in a CRM1-dependent manner and the second event is the interruption of mitochondrial transport resulting from the cytoplasmic localization of HDAC1. In the cytosol of neurons challenged by cytokines and excitatory aminoacids, HDAC1 formed complexes with motor-protein and microtubules and this resulted in blockade of axonal transport and release of cargo from motor proteins. We suggest that these findings might be the framework for future studies and for the development of novel therapeutic targets for axonal damage in demyelinating conditions.Key words: neurodegeneration, histone deacetylase, multiple sclerosis, demyelination, nuclear export  相似文献   

3.
We have used back-projection methods to obtain three-dimensional maps of motor-protein decorated nine and ten protofilament microtubules polymerized in the presence of high salt and preserved in vitreous ice. The resulting three-dimensional maps show that the vast majority of these microtubules have multiple seams, rather than being helical as would be expected according to the lattice accommodation model. These results indicate that microtubules should be analyzed by back-projection before using helical reconstruction approaches, and that nine and ten protofilament microtubules polymerized in high salt conditions are not suitable for helical analysis.  相似文献   

4.
Somatic electromotility in cochlear outer hair cells, as the basis for cochlear amplification, is a mammalian novelty and it is largely dependent upon rapid cell length changes proposed to be mediated by the motor-protein prestin, a member of the solute carrier anion-transport family 26. Thus, one might predict that prestin has specifically evolved in mammals to support this unique mammalian adaptation. Using codon-based likelihood models we found evidences for positive selection in the motor-protein prestin only in the mammalian lineage, supporting the hypothesis that lineage-specific adaptation-driven molecular changes endowed prestin with the ability to mediate somatic electromotility. Moreover, signatures of positive selection were found on the alpha10, but not the alpha9, nicotinic cholinergic receptor subunits. An alpha9alpha10-containing nicotinic cholinergic receptor mediates inhibitory olivocochlear efferent effects on hair cells across vertebrates. Our results suggest that evolution-driven modifications of the alpha10 subunit probably allowed the alpha9alpha10 heteromeric receptor to serve a differential function in the mammalian cochlea. Thus, we describe for the first time at the molecular level signatures of adaptive evolution in two outer hair cell proteins only in the lineage leading to mammals. This finding is most likely related with the roles these proteins play in somatic electromotility and/or its fine tuning.  相似文献   

5.
Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.  相似文献   

6.
The field of left-right (LR) patterning--the study of molecular mechanisms that yield directed morphological asymmetries in otherwise symmetrical organisms--is in disarray. On one hand is the undeniably elegant hypothesis that rotary beating of inclined cilia is the primary symmetry-breaking step: they create an asymmetric extracellular flow across the embryonic midline. On the other hand lurk many early symmetry-breaking steps that, even in some vertebrates, precede the onset of ciliary flow. We highlight an intracellular model of LR patterning where gene expression is initiated by physiological asymmetries that arise from subcellular asymmetries (e.g. motor-protein function along oriented cytoskeletal tracks). A survey of symmetry breaking in eukaryotes ranging from protists to vertebrates suggests that intracellular cytoskeletal elements are ancient and primary LR cues. Evolutionarily, quirky effectors like ciliary motion were likely added later in vertebrates. In some species (like mice), developmentally earlier cues may have been abandoned entirely. Late-developing asymmetries pose a challenge to the intracellular model, but early mid-plane determination in many groups increases its plausibility. Multiple experimental tests are possible.  相似文献   

7.
《Biophysical journal》2019,116(9):1719-1731
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.  相似文献   

8.
Dendrites allow neurons to integrate sensory or synaptic inputs, and the spatial disposition and local density of branches within the dendritic arbor limit the number and type of inputs. Drosophila melanogaster dendritic arborization (da) neurons provide a model system to study the genetic programs underlying such geometry in vivo. Here we report that mutations of motor-protein genes, including a dynein subunit gene (dlic) and kinesin heavy chain (khc), caused not only downsizing of the overall arbor, but also a marked shift of branching activity to the proximal area within the arbor. This phenotype was suppressed when dominant-negative Rab5 was expressed in the mutant neurons, which deposited early endosomes in the cell body. We also showed that 1) in dendritic branches of the wild-type neurons, Rab5-containing early endosomes were dynamically transported and 2) when Rab5 function alone was abrogated, terminal branches were almost totally deleted. These results reveal an important link between microtubule motors and endosomes in dendrite morphogenesis.  相似文献   

9.
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.  相似文献   

10.
Circadian rhythms are fundamental properties of most eukaryotes, but evidence of biological clocks that drive these rhythms in prokaryotes has been restricted to Cyanobacteria. In vertebrates, the gastrointestinal system expresses circadian patterns of gene expression, motility and secretion in vivo and in vitro, and recent studies suggest that the enteric microbiome is regulated by the host’s circadian clock. However, it is not clear how the host’s clock regulates the microbiome. Here, we demonstrate at least one species of commensal bacterium from the human gastrointestinal system, Enterobacter aerogenes, is sensitive to the neurohormone melatonin, which is secreted into the gastrointestinal lumen, and expresses circadian patterns of swarming and motility. Melatonin specifically increases the magnitude of swarming in cultures of E. aerogenes, but not in Escherichia coli or Klebsiella pneumoniae. The swarming appears to occur daily, and transformation of E. aerogenes with a flagellar motor-protein driven lux plasmid confirms a temperature-compensated circadian rhythm of luciferase activity, which is synchronized in the presence of melatonin. Altogether, these data demonstrate a circadian clock in a non-cyanobacterial prokaryote and suggest the human circadian system may regulate its microbiome through the entrainment of bacterial clocks.  相似文献   

11.
Mitotic spindles isolated from sea urchin eggs can be reactivated to undergo mitotic processes in vitro. Spindles incubated in reactivation media containing sea urchin tubulin and nucleotides undergo pole-pole elongation similar to that observed in living cells during anaphase-B. The in vitro behavior of spindles isolated during metaphase and anaphase are compared. Both metaphase and anaphase spindles undergo pole-pole elongation with similar rates, but only in the presence of added tubulin. In contrast, metaphase but not anaphase spindles increase chromosome-pole distance in the presence of exogenous tubulin, suggesting that in vitro, tubulin can be incorporated at the kinetochores of metaphase but not anaphase chromosomes. The rate of spindle elongation, ultimate length achieved, and the increase in chromosome-pole distance for isolated metaphase spindles is related to the concentration of available tubulin. Pole-pole elongation and chromosome-pole elongation does not require added adenosine triphosphate (ATP). Guanosine triphosphate (GTP) will support all activities observed. Thus, the force generation mechanism for anaphase-B in isolated sea urchin spindles is independent of added ATP, but dependent on the availability of tubulin. These results support the hypothesis that the mechanism of force generation for anaphase-B is linked to the incorporation of tubulin into the mitotic apparatus. (If, in addition, a microtubule-dependent motor-protein(s) is acting to generate force, it does not appear to be dependent on ATP as the exclusive energy source.  相似文献   

12.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   

13.
Thirty-two genes have been identified within the genome of the yeast Saccharomyces cerevisiae which putatively encode mitochondrial transport proteins. We have attempted to overexpress a subset of these genes, namely those which encode mitochondrial transporters of unknown function, and have succeeded in overexpressing 19 of these genes. The overexpressed proteins were then isolated and tested for five well-characterized reconstituted transport activities (i.e., the transport of citrate, dicarboxylates, pyruvate, camitine, and aspartate). Utilizing this approach, we have clearly identified the yeast mitochondrial dicarboxylate transport protein, as well as two additional lower-magnitude transport functions (i.e., tricarboxylate and dicarboxylate transport activities). The implications of these results and the considerations relevant to this approach are discussed.  相似文献   

14.
We have isolated mutants of Escherichia coli that have an altered beta-galactoside transport system. This altered transport system is able to transport a sugar, maltose, that the wild-type beta-galactoside transport system is unable to transport. The mutation that alters the specificity of the transport system is in the lacY gene, and we refer to the allele as lacYmal. The lacYmal allele was detected originally in strains in which the lac genes were fused to the malF gene. Thus, as a result of gene fusion and isolation of the lacYmal mutation, a new transport system was evolved with regulatory properties and specificity similar to those of the original maltose transport system. Maltose transport via the lacYmal gene product is independent of all of the normal maltose transport system components. The altered transport system shows a higher affinity than the wild-type transport system for two normal substrates of the beta-galactoside transport system, thiomethyl-beta-D-galactoside and o-nitrophenyl-beta-D-galactoside.  相似文献   

15.
Many secondary membrane transport systems contain reactive sulfhydryl groups. In this review the applications of SH reagents for analyzing the role of sulfhydryl groups in membrane transport systems will be discussed. First an overview will be given of the more important reagents, that have been used to study SH-groups in membrane transport systems, and examples will be given of transport proteins in which the role of cysteines have been analyzed. An important application of SH-reagents to label transport proteins using various SH-reagents modified with fluorescent- or spin-label moieties will be discussed. Two general models are shown which have been proposed to explain the role of sulfhydryl groups in some membrane transport systems.  相似文献   

16.
Conclusion Much more work has been done on Pi transport processes, even in the last five years, than we have been able to mention in the space available. We have restricted our discussion to studies on mechanisms of transport or transport regulation, identification of transport proteins and their essential amino acids, and isolation, purification, and reconstitution of Pi transport systems. Many valuable studies on the physiology of Pi transport and its regulation and Pi transport in nonepithelial cells have also been conducted. Transport of Pi into and out of organelles other than the mitochondrion is gaining well-deserved attention, as are transport processes in fungi and plants. It is hoped that in another five years many Pi transport processes will be understood in true molecular terms and that this will increase our knowledge of cellular bioenergetics and metabolism.  相似文献   

17.
The single-celled ancestors of multi-cellular animals (metazoans) did not need to transport nutrients between cells, but this ability is vital for modern animals. How could intercellular nutrient transport have begun? And how did this influence the early evolution of animals? In this hypothesis, I suggest that nutrients could have passed directly between the cytoplasm of conjoined cells in early compacted cell-balls, along the plane of the closed epithelium. This would have limited early animals to the size and form of modern embryos. The mechanisms that indirectly transport nutrients between discrete cells, via the extracellular fluid within the body-space, are modelled to have evolved sequentially; so comparison of nutrient transport processes could provide evidence of any early divergences of phyla. When the last of the indirect intercellular transport processes for essential nutrients had been developed, the extracellular fluid within the body-space would have contained all necessary nutrients. Then the epithelium could have greatly expanded, and cells lived and divided within the body-space. This development of nutrient transport processes would have enabled animals to greatly increase in size and complexity.  相似文献   

18.
Neurofilament light gene mutations have been linked to a subset of patients with Charcot-Marie-Tooth disease, the most common inherited motor and sensory neuropathy. We have previously shown that Charcot-Marie-Tooth-linked mutant neurofilament light assembles abnormally in non-neuronal cells. In this study, we have characterized the effects of expression of mutant neurofilament light proteins on axonal transport in a neuronal cell culture model. We demonstrated that the Charcot-Marie-Tooth-linked neurofilament light mutations: (i) affect the axonal transport of mutant neurofilaments; (ii) have a dominant-negative effect on the transport of wild-type neurofilaments; (iii) affect the transport of mitochondria and the anterograde axonal transport marker human amyloid precursor protein; (iv) result in alterations of retrograde axonal transport and (v) cause fragmentation of the Golgi apparatus. Increased neuritic degeneration was observed in neuronal cells overexpressing neurofilament light mutants. Our results suggest that these generalized axonal transport defects could be responsible for the neuropathy in Charcot-Marie-Tooth disease.  相似文献   

19.
Revealing the mechanisms by which neurofilament transport and turnover are regulated has proven difficult over the years but recent studies have given new insight into these processes. Mature neurofilament fibers may incorporate a fourth functional subunit, alpha-internexin, as new evidence suggests. Recent findings have made the role of phosphorylation in regulating neurofilament transport velocity controversial. Kinesin and dynein may transport neurofilaments in slow axonal transport as they have been found to associate with neurofilaments. Neurofilament transport and turnover rates may be reduced depending on the existing stationary neurofilament network. Finally, mutations in neurofilament light that have been linked to Charcot-Marie-Tooth disease as well as other neurofilament abnormalities in human disease are discussed.  相似文献   

20.
Abstract Pseudomonas aeruginosa is known to have an inducible uptake system for the enterobacterial siderophore enterobactin. In this work we have examined iron transport mediated by the biosynthetic precursor 2,3-dihydroxybenzoic acid and N -(2,3-dihydroxybenzoyl)- l -serine, a breakdown product of enterobactin. Iron complexed with 2,3-dihydroxybenzoyl-L-serine was transported into P. aeruginosa IA1 via a transport system which is energy-dependent and iron-repressible. The rate of transport was not altered by growing the cells in the presence of either pyoverdin or pyochelin, which have been shown previously to induce transport via that system. Growth of the cells in the presence of enterobactin did cause an increase in the rate of transport, indicating that the complex can be transported by the inducible enterobactin uptake system, but also that a separate system must exist. In contrast, transport of iron complexed with 2,3-dihydroxybenzoic acid was neither iron-repressible nor strongly energy-dependent, from which we conclude that there must be a novel mode of transport not characteristic of iron-siderophore transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号