首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Binding of E. coli transfer RNA to E. coli RNA polymerase   总被引:1,自引:0,他引:1  
  相似文献   

2.
The E. coli dnaY gene encodes an arginine transfer RNA   总被引:21,自引:0,他引:21  
  相似文献   

3.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

4.
The kinetics of E. coli RNA polymerase.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using an assay specific for chain elongation of E. coli RNA polymerase the kinetics of this propagation reaction have been studied. The kinetic behaviour is consistent woth the mathematical model formulated for this multisubstrate enzyme. The effect of increasing salt concentration on the kinetics of the reaction indicated that DNA unwinding is probably a necessary step in the propagation step, although this may not be the rate limiting step under all conditions.  相似文献   

5.
6.
The isolation, properties, and genetic analysis of a strain of Escherichia coli K-12 with an amber recA mutation are described. The experiments demonstrate that the recA product is a protein that is probably not essential for growth.  相似文献   

7.
Binding of E. coli RNA polymerase to chromatin subunits.   总被引:6,自引:3,他引:3       下载免费PDF全文
  相似文献   

8.
AS part of a search for the chemical rules underlying the recognition of a tRNA by its aminoacyl-tRNA ligase1, we are examining the effect of C?U transitions on aminoacylation of tRNA. In this paper, we describe four well-characterized modifications of yeast tRNATyr induced by reaction with bisulphite ions at pH 5.8. Three of the observed changes proved to be C-?U transitions produced by the series of reactions shown in Fig. 1 (refs. 2–5).  相似文献   

9.
RNase E, an RNA processing enzyme from Escherichia coli.   总被引:18,自引:0,他引:18  
An activity, RNase E, was purified about 100-fold from Escherichia coli cells, it can process p5 rRNA from a 9 S RNA molecule which accumulates in a mutant of E. coli defective in the maturation of 5 S rRNA. The enzyme requires Na+, K+, or NH4+, and Mg2+ or Mn2+. The molecular weight of the enzyme is about 70,000 and its pH optimum is 7.6 to 8.0. Its temperature optimum is around 30 degrees C, and it can be irreversibly inactivated at 50 degrees C. It has a very high degree of specificity but the reaction can be inhibited by nonspecific RNAs. We interpret its mode of action in producing p5 RNA as being accomplished in two steps, 9 S RNA is first processed to 7 S and 4 S, and subsequently 7 S is further processed to p5.  相似文献   

10.
Heterogeneity of E. coli RNA polymerase   总被引:11,自引:0,他引:11  
  相似文献   

11.
Translation of AKR-murine leukemia viral RNA in an E. coli cell-free system   总被引:4,自引:0,他引:4  
High molecular weight RNA isolated from the oncogenic type C murine leukemia virus, AKR-MuLV, stimulates the incorporation of radioactive amino acids into protein in an E. coli cell-free system. Analysis of the translational products by SDS polyacrylamide gel electrophoresis demonstrated the synthesis of at least three proteins corresponding in molecular weight to several authentic viral proteins. Positive immunoprecipitation tests also confirm the translational product as AKR-MuLV related. Although at least 18 proteins were found on analysis of disrupted murine leukemia virions, only three were synthesized in vitro in response to AKR-MuLV RNA in the E. coli cell-free system.  相似文献   

12.
13.
14.
A temperature-sensitive Escherichia coli mutant, which contains a heat-labile RNase E, fails to produce 5-S rRNA at a non-permissive temperature. It accumulates a number of RNA molecules in the 4-12-S range. One of these molecules, a 9-S RNA, is a precursor to 5-S rRNA [Ghora, B. K. and Apirion, D. (1978) Cell, 15, 1055-1056]. These molecules were purified and processed in a cell-free system. Some of these RNA molecules, after processing, give rise to products the size of transfer RNA, but not to 5-S-rRNA. Further characterization of the processed products of one such precursor molecule shows that it contains tRNA1Leu and tRNA1His. RNase E is necessary but not sufficient for the processing of this molecule to mature tRNAs in vitro. The accumulation of such tRNA precursors in an RNase E mutant cell and the obligatory participation of RNase E in its processing indicate that RNase E functions in the maturation of transfer RNAs as well as of 5-S rRNA.  相似文献   

15.
The Kinetics of the Synthesis of Ribosomal RNA in E. coli   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of the synthesis of ribosomal RNA in E. coli has been studied using C14-uracil as tracer. Two fractions of RNA having sedimentation constants between 4 and 8S have kinetic behavior consistent with roles of precursors. The first consists of a very small proportion of the RNA found in the 100,000 g supernatant after ribosomes have been removed. It has been separated from the soluble RNA present in much larger quantities by chromatography on DEAE-cellulose columns. The size and magnitude of flow through this fraction are consistent with it being precursor to a large part of the ribosomal RNA.

A fraction of ribosomal RNA of similar size is also found in the ribosomes. This fraction is 5 to 10 per cent of the total ribosomal RNA and a much higher proportion of the RNA of the 20S and 30S ribosomes present in the cell extract. The rate of incorporation of label into this fraction and into the main fractions of ribosomal RNA of 18S and 28S suggests that the small molecules are the precursors of the large molecules. Measurements of the rate of labeling of the 20, 30, and 50S ribosomes made at corresponding times indicate that ribosome synthesis occurs by concurrent conversion of small to large molecules of RNA and small to large ribosomes.

  相似文献   

16.
17.
Nonsense suppressors were obtained in a haploid yeast strain containing eight nutritional mutations, that are assumed to be amber or ochre, and the cyc1-179 amber mutation that has a UAG codon corresponding to position 9 in iso-1-cytochrome c. Previous studies established that the biosynthesis and function of iso-1-cytochrome c is compatible with replacements at position 9 of amino acids having widely different structures (Stewart and Sherman 1972). UV-induced revertants, selected on media requiring the reversion of one or two of the amber nutritional markers, were presumed to contain a suppressor if there was the unselected reversion of at least one other marker. The 1088 suppressors that were isolated could be divided into 78 phenotypic classes. Only 43 suppressors of three classes caused the production of more than 50% of the normal amount of iso-1-cytochrome c in the cyc1-179 strain. Genetic analyses indicated that all of these highly efficient amber suppressors are allelic to one or another of the eight suppressors which cause the insertion of tyrosine at ochre (UAA) codons (Gilmore, Stewart and Sherman 1971). Furthermore, only tyrosine has been identified at position 9 in iso-1-cytochrome c in cyc1-179 strains suppressed with these efficient amber suppressors.  相似文献   

18.
6S RNA regulates E. coli RNA polymerase activity   总被引:13,自引:0,他引:13  
Wassarman KM  Storz G 《Cell》2000,101(6):613-623
The E. coli 6S RNA was discovered more than three decades ago, yet its function has remained elusive. Here, we demonstrate that 6S RNA associates with RNA polymerase in a highly specific and efficient manner. UV crosslinking experiments revealed that 6S RNA directly contacts the sigma70 and beta/beta' subunits of RNA polymerase. 6S RNA accumulates as cells reach the stationary phase of growth and mediates growth phase-specific changes in RNA polymerase. Stable association between sigma70 and core RNA polymerase in extracts is only observed in the presence of 6S RNA. We show 6S RNA represses expression from a sigma70-dependent promoter during stationary phase. Our results suggest that the interaction of 6S RNA with RNA polymerase modulates sigma70-holoenzyme activity.  相似文献   

19.
20.
Strains of the yeast Saccharomyces cerevisiae that contain highly efficient amber (UAG) suppressors grow poorly on nutrient medium, while normal or nearly normal growth rates are observed when these strains lose the supressors or when the suppressors are mutated to lower efficiencies. The different growth rates account for the accumulation of mutants with lowered efficiencies in cultures of strains with highly efficient amber suppressors. Genetic analyses indicate that one of the mutations with a lowered efficiency of suppression is caused by an intragenic mutation of the amber supressor. The inhibition of growth caused by excessive suppression is expected to be exacerbated when appropriate suppressors are combined together in haploid cells if two suppressors act with a greater efficiency than a single suppressor. Such retardation of growth is observed with combinations of two UAA (ochre) suppressors (Gilmore 1967) and with combinations of two UAG suppressors when the efficiencies of each of the suppressors are within a critical range. In contrast, combinations of a UAA suppressor and a UAG suppressor do not affect growth rate. Apparently while either excessive UAA or excessive UAG suppression is deleterious to yeast, a moderate level of simultaneous UAA and UAG suppression is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号