首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding.  相似文献   

2.
Wu X  Brooks BR 《Biophysical journal》2004,86(4):1946-1958
The beta-hairpin fold mechanism of a nine-residue peptide, which is modified from the beta-hairpin of alpha-amylase inhibitor tendamistat (residues 15-23), is studied through direct folding simulations in explicit water at native folding conditions. Three 300-nanosecond self-guided molecular dynamics (SGMD) simulations have revealed a series of beta-hairpin folding events. During these simulations, the peptide folds repeatedly into a major cluster of beta-hairpin structures, which agree well with nuclear magnetic resonance experimental observations. This major cluster is found to have the minimum conformational free energy among all sampled conformations. This peptide also folds into many other beta-hairpin structures, which represent some local free energy minimum states. In the unfolded state, the N-terminal residues of the peptide, Tyr-1, Gln-2, and Asn-3, have a confined conformational distribution. This confinement makes beta-hairpin the only energetically favored structure to fold. The unfolded state of this peptide is populated with conformations with non-native intrapeptide interactions. This peptide goes through fully hydrated conformations to eliminate non-native interactions before folding into a beta-hairpin. The folding of a beta-hairpin starts with side-chain interactions, which bring two strands together to form interstrand hydrogen bonds. The unfolding of the beta-hairpin is not simply the reverse of the folding process. Comparing unfolding simulations using MD and SGMD methods demonstrate that SGMD simulations can qualitatively reproduce the kinetics of the peptide system.  相似文献   

3.
H Wang  S S Sung 《Biopolymers》1999,50(7):763-776
Folding of beta-hairpin structures of synthetic peptides has been simulated using the molecular dynamics method with a solvent-referenced potential. Two similar sequences, Ac-MQIFVKS(D)PGKTITLKV-NH(2) and Ac-MQIFVKS(L)PGKTITLKV-NH(2), derived from the N-terminal beta-hairpin of ubiquitin, were used to study the effects of turn residues in beta-hairpin folding. The simulations were carried out for 80 ns at 297 K. With extended initial conformation, the (D)P-containing peptide folded into a stable 2:2 beta-hairpin conformation with a type II' beta-turn at (D)PG. The overall beta-hairpin ratio, calculated by the DSSP algorithm, was 32.6%. With randomly generated initial conformations, the peptide also formed the stable 2:2 beta-hairpin conformation. The interactions among the side chains in the 2:2 beta-hairpin were almost identical to those in the native protein. These interactions reduced the solvation energy upon folding and stabilized the beta-hairpin conformation. Without the solvent effect, the peptide did not fold into stable beta-hairpin structures. The solvent effect is crucial for the formation of the beta-hairpin conformation. The effect of the temperature has also been studied. The (L)P-containing peptide did not fold into a stable beta-hairpin conformation and had a much lower beta-hairpin ratio (16.6%). The( L)P-containing peptide has similar favorable side-chain interactions, but the turn formed by (L)PG does not connect well with the right-handed twist of the beta-strands. For comparison, the isolated N-terminal peptide of ubiquitin, Ac-MQIFVKTLTGKTITLEV-NH(2), was also simulated and its beta-hairpin ratio was low, indicating that the beta-hairpin in the native structure is stabilized by the interaction with the protein environment. These simulation results agreed qualitatively with the available experimental findings.  相似文献   

4.
Yoda T  Sugita Y  Okamoto Y 《Proteins》2007,66(4):846-859
G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.  相似文献   

5.
NMR studies of the folding and conformational properties of a beta-hairpin peptide, several peptide fragments of the hairpin, and sequence-modified analogues, have enabled the various contributions to beta-hairpin stability in water to be dissected. Temperature and pH-induced unfolding studies indicate that the folding-unfolding equilibrium approximates to a two-state model. The hairpin is highly resistant to denaturation and is still significantly folded in 7 M urea at 298 K. Thermodynamic analysis shows the hairpin to fold in water with a significant change in heat capacity, however, DeltaCp degrees in 7 M urea is reduced. V/Y-->A mutations on one strand of the hairpin reduce folding to <10 %, consistent with a hydrophobic stabilisation model. We show that in a truncated peptide (residues 6-16) lacking the hydrophobic residues on one beta-strand, the type I' Asn-Gly turn in the sequence SINGKK is significantly populated in water in the absence of interstrand hydrophobic contacts. Unrestrained molecular dynamics simulations of unfolding, using an explicit solvation model, show that the conformation of the NG turn persists for longer than the AG analogue, which has a much lower propensity for type I' turn formation from a data base analysis of preferred turns. The origin of the high stability of the Asn-Gly turn is not entirely clear; data base analysis of 66 NG turns, together with molecular dynamics simulations, reveals no participation of the Asn side-chain in turn-stabilising interactions with the peptide backbone. However, hydration analysis of the molecular dynamics simulations reveals a pocket of "high density" water bridging between the Asn side-chain and peptide main-chain that suggests solvent-mediated interactions may play an important role in modulating phi,psi propensities in the NG turn region.  相似文献   

6.
Wang H  Varady J  Ng L  Sung SS 《Proteins》1999,37(3):325-333
Molecular dynamics simulations of beta-hairpin folding have been carried out with a solvent-referenced potential at 274 K. The model peptide V4DPGV4 formed stable beta-hairpin conformations and the beta-hairpin ratio calculated by the DSSP algorithm was about 56% in the 50-ns simulation. Folding into beta-hairpin conformations is independent of the initial conformations. The simulations provided insights into the folding mechanism. The hydrogen bond often formed in a beta-turn first, and then propagated by forming more hydrogen bonds along the strands. Unfolding and refolding occurred repeatedly during the simulations. Both the hydrogen bonding and the hydrophobic interaction played important roles in forming the ordered structure. Without the hydrophobic effect, stable beta-hairpin conformations did not form in the simulations. With the same energy functions, the alanine-based peptide (AAQAA)3Y folded into helical conformations, in agreement with experiments. Folding into an alpha-helix or a beta-hairpin is amino acid sequence-dependent.  相似文献   

7.
The peptide TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase adopts a helical conformation in the crystal structure and is a site for two hydrated helical segments, which are thought to be helical folding intermediates. Overlapping sequences of four to five residues from the peptide, sample both helical and strand conformations in known protein structures, which are dissimilar to glyceraldehyde-3-phosphate dehydrogenase suggesting that the peptide may have a structural ambivalence. Molecular dynamics simulations of the peptide sequence performed for a total simulation time of 1.2 micros, starting from the various initial conformations using GROMOS96 force field under NVT conditions, show that the peptide samples a large number of conformational forms with transitions from alpha-helix to beta-hairpin and vice versa. The peptide, therefore, displays a structural ambivalence. The mechanism from alpha-helix to beta-hairpin transition and vice versa reveals that the compact bends and turns conformational forms mediate such conformational transitions. These compact structures including helices and hairpins have similar hydrophobic radius of gyration (Rgh) values suggesting that similar hydrophobic interactions govern these conformational forms. The distribution of conformational energies is Gaussian with helix sampling lowest energy followed by the hairpins and coil. The lowest potential energy of the full helix may enable the peptide to take up helical conformation in the crystal structure of the glyceraldehyde-3-phosphate dehydrogenase, even though the peptide has a preference for hairpin too. The relevance of folding and unfolding events observed in our simulations to hydrophobic collapse model of protein folding are discussed.  相似文献   

8.
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.  相似文献   

9.
The folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding. We demonstrate by NMR studies and molecular dynamics simulations that the first turn of the hYAP, FBP28, and PIN1 WW domains is structurally dynamic and solvent exposed in the native and folding transition states. It is, therefore, unlikely that the formation of the beta-turn per se provides the energetic driving force for hairpin folding. It is more likely that the turn acts as an easily formed hinge that facilitates the formation of the hairpin; it is a nucleus as defined by the nucleation-condensation mechanism whereby a diffuse nucleus is stabilized by associated interactions.  相似文献   

10.
The structural and dynamical behavior of the 41-56 beta-hairpin from the protein G B1 domain (GB1) has been studied at different temperatures using molecular dynamics (MD) simulations in an aqueous environment. The purpose of these simulations is to establish the stability of this hairpin in view of its possible role as a nucleation site for protein folding. The conformation of the peptide in the crystallographic structure of the protein GB1 (native conformation) was lost in all simulations. The new equilibrium conformations are stable for several nanoseconds at 300K (>10 ns), 350 K (>6.5 ns), and even at 450 K (up to 2.5 ns). The new structures have very similar hairpin-like conformations with properties in agreement with available experimental nuclear Overhauser effect (NOE) data. The stability of the structure in the hydrophobic core region during the simulations is consistent with the experimental data and provides further evidence for the role played by hydrophobic interactions in hairpin structures. Essential dynamics analysis shows that the dynamics of the peptide at different temperatures spans basically the same essential subspace. The main equilibrium motions in this subspace involve large fluctuations of the residues in the turn and ends regions. Of the six interchain hydrogen bonds, the inner four remain stable during the simulations. The space spanned by the first two eigenvectors, as sampled at 450 K, includes almost all of the 47 different hairpin structures found in the database. Finally, analysis of the hydration of the 300 K average conformations shows that the hydration sites observed in the native conformation are still well hydrated in the equilibrium MD ensemble.  相似文献   

11.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

12.
The conformational transition states of a beta-hairpin peptide in explicit water were identified from the free energy landscapes obtained from the multicanonical ensemble, using an enhanced conformational sampling calculation. The beta-hairpin conformations were significant at 300 K in the landscape, and the typical nuclear Overhauser effect signals were reproduced, consistent with the previously reported experiment. In contrast, the disordered conformations were predominant at higher temperatures. Among the stable conformations at 300 K, there were several free energy barriers, which were not visible in the landscapes formed with the conventional parameters. We identified the transition states around the saddle points along the putative folding and unfolding paths between the beta-hairpin and the disordered conformations in the landscape. The characteristic features of these transition states are the predominant hydrophobic contacts and the several hydrogen bonds among the side-chains, as well as some of the backbone hydrogen bonds. The unfolding simulations at high temperatures, 400 K and 500 K, and their principal component analyses also provided estimates for the transition state conformations, which agreed well with those at 400 K and 500 K deduced from the current free energy landscapes at 400 K and 500 K, respectively. However, the transition states at high temperatures were much more widely distributed on the landscape than those at 300 K, and their conformations were different.  相似文献   

13.
Du D  Tucker MJ  Gai F 《Biochemistry》2006,45(8):2668-2678
The folding kinetics of a 16-residue beta-hairpin (trpzip4) and five mutants were studied by a laser-induced temperature-jump infrared method. Our results indicate that mutations which affect the strength of the hydrophobic cluster lead to a decrease in the thermal stability of the beta-hairpin, as a result of increased unfolding rates. For example, the W45Y mutant has a phi-value of approximately zero, implying a folding transition state in which the native contacts involving Trp45 are not yet formed. On the other hand, mutations in the turn or loop region mostly affect the folding rate. In particular, replacing Asp46 with Ala leads to a decrease in the folding rate by roughly 9 times. Accordingly, the phi-value for D46A is determined to be approximately 0.77, suggesting that this residue plays a key role in stabilizing the folding transition state. This is most likely due to the fact that the main chain and side chain of Asp46 form a characteristic hydrogen bond network with other residues in the turn region. Taken together, these results support the folding mechanism we proposed before, which suggests that the turn formation is the rate-limiting step in beta-hairpin folding and, consequently, a stronger turn-promoting sequence increases the stability of a beta-hairpin primarily by increasing its folding rate, whereas a stronger hydrophobic cluster increases the stability of a beta-hairpin primarily by decreasing its unfolding rate. In addition, we have examined the compactness of the thermally denatured and urea-denatured states of another 16-residue beta-hairpin, using the method of fluorescence resonance energy transfer. Our results show that the thermally denatured state of this beta-hairpin is significantly more compact than the urea-denatured state, suggesting that the very first step in beta-hairpin folding, when initiated from an extended conformation, probably corresponds to a process of hydrophobic collapse.  相似文献   

14.
Experimental evidence and theoretical models both suggest that protein folding is initiated within specific fragments intermittently adopting conformations close to that found in the protein native structure. These folding initiation sites encompassing short portions of the protein are ideally suited for study in isolation by computational methods aimed at peering into the very early events of folding. We have used Molecular Dynamics (MD) technique to investigate the behavior of an isolated protein fragment formed by residues 85 to 102 of barnase that folds into a β hairpin in the protein native structure. Three independent MD simulations of 1.3 to 1.8 ns starting from unfolded conformations of the peptide portrayed with an all-atom model in water were carried out at gradually decreasing temperature. A detailed analysis of the conformational preferences adopted by this peptide in the course of the simulations is presented. Two of the unfolded peptide conformations fold into a hairpin characterized by native and a larger bulk of nonnative interactions. Both refolding simulations substantiate the close relationship between interstrand compactness and hydrogen bonding network involving backbone atoms. Persistent compactness witnessed by side-chain interactions always occurs concomitantly with the formation of backbone hydrogen bonds. No highly populated conformations generated in a third simulation starting from the remotest unfolded conformer relative to the native structure are observed. However, nonnative long-range and medium-range contacts with the aromatic moiety of Trp94 are spotted, which are in fair agreement with a former nuclear magnetic resonance study of a denaturing solution of an isolated barnase fragment encompassing the β hairpin. All this lends reason to believe that the 85–102 barnase fragment is a strong initiation site for folding. Proteins 29:212–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Beta-hairpins constitute an important class of connecting protein secondary structures. Several groups have postulated that such structures form early in the folding process and serve to nucleate the formation of extended beta-sheet structures. Despite the importance of beta-hairpins in protein folding, little is known about the mechanism of formation of these structures. While it is well established that there is a complex interplay between the stability of a beta-hairpin and loop conformational propensity, loop length, and the formation of stabilizing cross-strand interactions (H-bonds and hydrophobic interactions), the influence of these factors on the folding rate is poorly understood. Peptide models provide a simple framework for exploring the molecular details of the formation of beta-hairpin structures. We have explored the fundamental processes of folding in two linear peptides that form beta-hairpin structures, having a stabilizing hydrophobic cluster connected by loops of differing lengths. This approach allows us to evaluate existing models of the mechanism of beta-hairpin formation. We find a substantial acceleration of the folding rate when the connecting loop is made shorter (i.e., the hydrophobic cluster is moved closer to the turn). Analysis of the folding kinetics of these two peptides reveals that this acceleration is a direct consequence of the reduced entropic cost of the smaller loop search.  相似文献   

16.
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease.  相似文献   

17.
Fifty-five molecular dynamics runs of two three-stranded antiparallel beta-sheet peptides were performed to investigate the relative importance of amino acid sequence and native topology. The two peptides consist of 20 residues each and have a sequence identity of 15 %. One peptide has Gly-Ser (GS) at both turns, while the other has d-Pro-Gly ((D)PG). The simulations successfully reproduce the NMR solution conformations, irrespective of the starting structure. The large number of folding events sampled along the trajectories at 360 K (total simulation time of about 5 micros) yield a projection of the free-energy landscape onto two significant progress variables. The two peptides have compact denatured states, similar free-energy surfaces, and folding pathways that involve the formation of a beta-hairpin followed by consolidation of the unstructured strand. For the GS peptide, there are 33 folding events that start by the formation of the 2-3 beta-hairpin and 17 with first the 1-2 beta-hairpin. For the (D)PG peptide, the statistical predominance is opposite, 16 and 47 folding events start from the 2-3 beta-hairpin and the 1-2 beta-hairpin, respectively. These simulation results indicate that the overall shape of the free-energy surface is defined primarily by the native-state topology, in agreement with an ever-increasing amount of experimental and theoretical evidence, while the amino acid sequence determines the statistically predominant order of the events.  相似文献   

18.
Wei G  Mousseau N  Derreumaux P 《Proteins》2004,56(3):464-474
The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer and Creutzfeld-Jakobs diseases, among others. The computational community has paid considerable attention to this problem; however, the associated time scale, typically on the order of milliseconds or more, represents a formidable challenge. Ab initio protein folding from long molecular dynamics simulations or ensemble dynamics is not feasible with ordinary computing facilities and new techniques must be introduced. Here we present a detailed study of the folding of a 16-residue beta-hairpin, described by a generic energy model and using the activation-relaxation technique. From a total of 90 trajectories at 300 K, three folding pathways emerge. All involve a simultaneous optimization of the complete hydrophobic and hydrogen bonding interactions. The first two pathways follow closely those observed by previous theoretical studies (folding starting at the turn or by interactions between the termini). The third pathway, never observed by previous all-atom folding, unfolding, and equilibrium simulations, can be described as a reptation move of one strand of the beta-sheet with respect to the other. This reptation move indicates that non-native interactions can play a dominant role in the folding of secondary structures. Furthermore, such a mechanism mediated by non-native hydrogen bonds is not available for study by unfolding and Gō model simulations. The exact folding path followed by a given beta-hairpin is likely to be influenced by its sequence and the solvent conditions. Taken together, these results point to a more complex folding picture than expected for a simple beta-hairpin.  相似文献   

19.
The aggregation of alpha-helix-rich proteins into beta-sheet-rich amyloid fibrils is associated with fatal diseases, such as Alzheimer's disease and prion disease. During an aggregation process, protein secondary structure elements-alpha-helices-undergo conformational changes to beta-sheets. The fact that proteins with different sequences and structures undergo a similar transition on aggregation suggests that the sequence nonspecific hydrogen bond interaction among protein backbones is an important factor. We perform molecular dynamics simulations of a polyalanine model, which is an alpha-helix in its native state and observe a metastable beta-hairpin intermediate. Although a beta-hairpin has larger potential energy than an alpha-helix, the entropy of a beta-hairpin is larger because of fewer constraints imposed by the hydrogen bonds. In the vicinity of the transition temperature, we observe the interconversion of the alpha-helix and beta-sheet states via a random coil state. We also study the effect of the environment by varying the relative strength of side-chain interactions for a designed peptide-an alpha-helix in its native state. For a certain range of side-chain interaction strengths, we find that the intermediate beta-hairpin state is destabilized and even disappears, suggesting an important role of the environment in the aggregation propensity of a peptide.  相似文献   

20.
Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号