首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DjlA is a novel DnaJ-like protein localized to the inner membrane of Escherichia coli through the single transmembrane domain (TMD) found at the N-terminus. The overproduction of DjlA activates expression of the cps operon, controlling synthesis and export of the extracellular polysaccharide colanic acid via the Rcs/B two-component signal transduction pathway. We now show that both the TMD and the J-region are essential for the induction of cps expression observed with the overproduction of DjlA. Furthermore, we describe the isolation and characterization of different point mutations in the TMD that completely or partially block the induction of cps expression associated with overproduction of DjlA. These mutations were shown not to affect the localization, stability or topology of the mutant DjlA proteins. We propose that these mutations are affecting specific interactions between the TMD of DjlA and its substrate protein(s), for example RcsC, the membrane sensor kinase partner of the Rcs/B signal transduction pathway.  相似文献   

2.
Constitutive expression of Pasteurella multocida toxin   总被引:1,自引:0,他引:1  
Abstract The introduction of a plasmid containing skc (streptokinase-coding gene) fused with ompA signal sequence into Escherichia coli K-12 strains, rendered the bacteria mucoid. Measurement of the synthesis of β-galactosidase from a cps-lacZ fusion ( lacZ fusion to a gene necessary for capsule synthesis) showed that the mucoid phenotype was due to induction of the capsular polysaccharide colanic acid synthesis. The introduction of a plasmid carrying skc fused with malE (gene encoding maltose-binding protein) also induced cps-lacZ expression, but intracellular expression of streptokinase in E. coli did not. The cps expression by secretion of streptokinase was diminished to the basal level in a cps-lacZ strain carrying a rcsC mutation. These results show that the secretion of streptokinase in E. coli induces colanic acid synthesis through the RcsC-dependent pathway.  相似文献   

3.
Wzc proteins are tyrosine autokinases. They are found in some important bacterial pathogens of humans and livestock as well as plant-associated bacteria, and are often encoded within gene clusters determining synthesis and assembly of capsular and extracellular polysaccharides. Autophosphorylation of Wzc(cps) is essential for assembly of the serotype K30 group 1 capsule in Escherichia coli O9a:K30, although a genetically unlinked Wzc(cps)-homologue (Etk) can also participate with low efficiency. While autophosphorylation of Wzc(cps) is required for assembly of high molecular weight K30 capsular polysaccharide, it is not essential for either the synthesis of the K30 repeat units or for activity of the K30 polymerase enzyme. Paradoxically, the cognate phosphotyrosine protein phosphatase for Wzc(cps), Wzb(cps), is also required for capsule expression. The tyrosine-rich domain at the C terminus of Wzc(cps) was identified as the site of phosphorylation and autophosphorylation of Wzc requires a functional Walker A motif. Intermolecular transphosphorylation of Wzc(cps) was detected in strains expressing a combination of mutant Wzc(cps) derivatives. The N- and C-terminal domains of Wzc(cps) were expressed independently to mimic the situation found naturally in Gram-positive bacteria. In this format, both domains were required for phosphorylation of the Wzc(cps) C terminus, and for capsule assembly. Regulation by a post-translational phosphorylation event represents a new dimension in the assembly of bacterial cell-surface polysaccharides.  相似文献   

4.
Insertion of factor MudJ in the intergenic region between divergent genes yrfF and yrfE, at centisome 76 in the genome of Salmonella enterica serovar Typhimurium LT2, confers the characteristics recently described for mucM mutants, i.e. mucoidy and resistance to mecillinam. Cloning of the intergenic region plus either the yrfF or the yrfE gene in a multicopy plasmid showed that only the plasmid carrying the yrfF gene complemented mucM mutants, thus suggesting that mucM mutations are in fact yrfF mutations. A null yrfF mutation obtained by insertion of a kanamycin cassette into the yrfF open reading frame (yrfF28::Kan) produced abortive colonies when transduced to a wild-type strain but was normally accepted by rcsB, rcsC or yojN strains. Neither mutations preventing synthesis of the capsular exopolysaccharide colanic acid (cps, galE) nor rcsA mutations, which reduce expression of cps genes, conferred tolerance to the lethal yrfF28::Kan mutation. Spontaneous suppressor mutations arose very frequently in abortive yrfF28::Kan colonies, and all of them affected either rcsC, yojN, or rcsB genes. Thus, the lethal effect caused by inactivation of gene yrfF appears to be mediated by a function that is dependent on the rcsC-yojN-rcsB phosphorelay system but does not involve synthesis of colanic acid.  相似文献   

5.
In Escherichia coli K-12, the rcsA and rcsB gene products are positive regulators in expression of the slime polysaccharide colanic acid. We have previously demonstrated the presence of rcsA sequences in E. coli K1 and K5, strains with group II capsular K antigens, and shown that introduction of multicopy rcsA into these strains results in the expression of colanic acid. We report here the presence of rcsB sequences in E. coli K1 and K5 and demonstrate that RcsB also plays a role in the biosynthesis of colanic acid in strains with group II K antigens. In E. coli K1 and K5 grown at 37 degrees C, multicopy rcsB and the resulting induction of colanic acid synthesis had no significant effect on synthesis of the group II K antigens. K-antigen-specific sugar transferase activities were not significantly different in the presence or absence of multicopy rcsB, and introduction of a cps mutation to eliminate colanic acid biosynthesis in a K1-derivative strain did not influence the activity of the polysialyltransferase enzyme responsible for synthesis of the K1 polymer. Furthermore, immunoelectron microscopy showed no detectable difference in the size or distribution of the group II K-antigen capsular layer in cells which produced colanic acid. Colanic acid expression therefore does not appear to significantly affect synthesis of the group II K-antigen capsule and, unlike for group I K antigens, expression of group II K antigens is not positively regulated by the rcs system.  相似文献   

6.
7.
8.
9.
Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.  相似文献   

10.
Regulation of capsular polysaccharide synthesis in Escherichia coli K12   总被引:39,自引:12,他引:27  
  相似文献   

11.
12.
Five genes (cps2E, cps2T, cps2F, cps2G, and cps2I) are predicted to encode the glycosyltransferases responsible for synthesis of the Streptococcus pneumoniae serotype 2 capsule repeat unit, which is polymerized to yield a branched surface structure containing glucose-glucuronic acid linked to a glucose-rhamnose-rhamnose-rhamnose backbone. Cps2E is the initiating glycosyltransferase, but experimental evidence supporting the functions of the remaining glycosyltransferases is lacking. To biochemically characterize the glycosyltransferases, the donor substrate dTDP-rhamnose was first synthesized using recombinant S. pneumoniae enzymes Cps2L, Cps2M, Cps2N, and Cps2O. In in vitro assays with each of the glycosyltransferases, only reaction mixtures containing recombinant Cps2T, dTDP-rhamnose, and the Cps2E product (undecaprenyl pyrophosphate glucose) generated a new product, which was consistent with lipid-linked glucose-rhamnose. cps2T, cps2F, and cps2I deletion mutants produced no detectable capsule, but trace amounts of capsule were detectable in Δcps2G mutants, suggesting that Cps2G adds a nonbackbone sugar. All Δcps2F, Δcps2G, and Δcps2I mutants contained different secondary suppressor mutations in cps2E, indicating that the initial mutations were lethal in the absence of reduced repeat unit synthesis. Δcps2T mutants did not contain secondary mutations affecting capsule synthesis. The requirement for secondary mutations in mutants lacking Cps2F, Cps2G, and Cps2I indicates that these activities occur downstream of the committed step in capsule synthesis and reveal that Cps2T catalyzes this step. Therefore, Cps2T is the β1-4 rhamnosyltransferase that adds the second sugar to the repeat unit and, as the committed step in type 2 repeat unit synthesis, is predicted to be an important point of capsule regulation.  相似文献   

13.
Streptococcus agalactiae is a primary cause of neonatal morbidity and mortality. Essential to the virulence of this pathogen is the production of a type-specific capsular polysaccharide (CPS) that enables the bacteria to evade host immune defenses. The identification, cloning, sequencing, and functional characterization of seven genes involved in type III capsule production have been previously reported. Here, we describe the cloning and sequencing of nine additional adjacent genes, cps(III)FGHIJKL, neu(III)B, and neu(III)C. Sequence comparisons suggested that these genes are involved in sialic acid synthesis, pentasaccharide repeating unit formation, and oligosaccharide transport and polymerization. The type III CPS (cpsIII) locus was comprised of 16 genes within 15.5 kb of contiguous chromosomal DNA. Primer extension analysis and investigation of mRNA from mutants with polar insertions in their cpsIII loci supported the hypothesis that the operon is transcribed as a single polycistronic message. The translated cpsIII sequences were compared to those of the S. agalactiae cpsIa locus, and the primary difference between the operons was found to reside in cps(III)H, the putative CPS polymerase gene. Expression of cps(III)H in a type Ia strain resulted in suppression of CPS Ia synthesis and in production of a CPS which reacted with type III-specific polyclonal antibody. Likewise, expression of the putative type Ia polymerase gene in a type III strain reduced synthesis of type III CPS with production of a type Ia immunoreactive capsule. Based on the similar structures of the oligosaccharide repeating units of the type Ia and III capsules, our observations demonstrated that cps(Ia)H and cps(III)H encoded the type Ia and III CPS polymerases, respectively. Additionally, these findings suggested that a single gene can confer serotype specificity in organisms that produce complex polysaccharides.  相似文献   

14.
To identify a chromosomal region of Streptococcus pneumoniae serotype 14 involved in capsule polysaccharide synthesis, two strategies were used: (i) Tn916 mutagenesis, followed by the characterization of four unencapsulated mutants, and (ii) cross-hybridization with a capsule polysaccharide synthesis gene (cps) probe from S. agalactiae, which has a structurally similar capsule. The two approaches detected the same chromosomal region consisting of two adjacent EcoRI fragments. One of these EcoRI fragments was cloned and hybridized with a cosmid library. This resulted in clone cMKO2. A similar cosmid clone was obtained from an unencapsulated Tn916 mutant, Spnl4.H. Sequence analysis of the two cosmid clones revealed that in the Tn916 mutant, a gene, cps14E, which is homologous to other bacterial genes encoding glycosyl transferases, had been inactivated. An open reading frame immediately downstream of cps14E, designated cps14F, shows no significant homology with any known genes or proteins. A functional assay showed that cps14E encodes a glycosyl transferase and that a gene-specific knockout mutant lacks this enzyme activity, whereas inactivation of cps14F does not have this effect.  相似文献   

15.
DjlA is a bitopic inner membrane protein, which belongs to the DnaJ co-chaperone family in Escherichia coli. Overproduction of DjlA leads to the synthesis of colanic acid, resulting in mucoidy, via the activation of the two-component regulatory system RcsC/B that controls the cps (capsular polysaccharide) operon. This induction requires both the co-chaperone activity of DjlA, in cooperation with DnaK and GrpE, and its unique transmembrane (TM) domain. Here, we show that the TM segment of DjlA acts as a dimerisation domain: when fused to the N-terminal DNA-binding domain of the lambda cI repressor protein, it can substitute for the native C-terminal dimerisation domain of cI, thus generating an active cI repressor. Replacing the TM domain of DjlA by other TM domains, with or without dimerising capacity, revealed that dimerisation is not sufficient for the induction of cps expression, indicating an additional sequence- or structurally specific role for the TM domain. Finally, the conserved glycines present in the TM domain of DjlA are essential for the induction of mucoidy, but not for dimerisation.  相似文献   

16.
Ennis, Herbert L. (St. Jude Children's Research Hospital, Memphis, Tenn.). Inhibition of protein synthesis by polypeptide antibiotics. II. In vitro protein synthesis. J. Bacteriol. 90:1109-1119. 1965.-This investigation has shown that the polypeptide antibiotics of the PA 114, vernamycin, and streptogramin complexes are potent inhibitors of the synthetic polynucleotide-stimulated incorporation of amino acids into hot trichloroacetic acid-insoluble peptide. The antibiotics inhibited the transfer of amino acid from aminoacyl-soluble ribonucleic acid (s-RNA) to peptide. The A component of the antibiotic complex was active alone in inhibiting in vitro protein synthesis, whereas the B fraction was totally inactive. However, the A component, when in combination with the B component, gave a greater degree of inhibition than that observed with the A fraction alone. On the other hand, the endogenous incorporation of amino acid was much less susceptible to inhibition than the incorporation of the corresponding amino acid in a system stimulated by synthetic polynucleotide. In addition, synthesis of polyphenylalanine stimulated by polyuridylic acid was inhibited to a greater extent when the antibiotics were added before the addition of polyuridylic acid to the reaction mixture than when the antibiotics were added after the polynucleotide had a chance to attach to the ribosomes. However, the antibiotics apparently did not inhibit the binding of C(14)-polyuridylic acid or C(14)-phenylalanyl-s-RNA to ribosomes. The antibiotics did not affect the normal release of nascent protein from ribosomes and did not disturb protein synthesis by causing misreading of the genetic code. The antibiotics bind irreversibly to the ribosome, or destroy the functional identity of the ribosome. The antibiotic action is apparently a result of the competition between antibiotic and messenger RNA for a functional site(s) on the ribosome.  相似文献   

17.
The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis.  相似文献   

18.
CpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size. Deletion of cps2A, cps2B, cps2C, or cps2D in the serotype 2 strain D39 did not affect the ability to transfer capsule to the cell wall. Deletion of cps2C or cps2D, which encode two domains of an autophosphorylating tyrosine kinase, resulted in the production of only short-chain polymers. The function of Cps2A is unknown, and the polymer laddering pattern of the cps2A deletion mutants appeared similar to that of the parent, although the total amount of capsule was decreased. Loss of Cps2B, a tyrosine phosphatase and a kinase inhibitor, resulted in an increase in capsule amount and a normal ladder pattern. However, Cps2B mutants exhibited reduced virulence following intravenous inoculation of mice and were unable to colonize the nasopharynx, suggesting a diminished capacity to sense or respond to these environments. In D39 and its isogenic mutants, the amounts of capsule and tyrosine-phosphorylated Cps2D (Cps2D approximately P) correlated directly. In contrast, restoration of type 2 capsule production followed by deletion of cps2B in Rx1, a laboratory passaged D39 derivative containing multiple uncharacterized mutations, resulted in decreased capsule amounts but no alteration in Cps2D approximately P levels. Thus, a factor outside the capsule locus, which is either missing or defective in the Rx1 background, is important in the control of capsule synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号