首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ips pini bark beetles use myrcene hydroxylases to produce the aggregation pheromone component, ipsdienol, from myrcene. The enantiomeric ratio of pheromonal ipsdienol is an important prezygotic mating isolation mechanism of I. pini and differs among geographically distinct populations. We explored the substrate and product ranges of myrcene hydroxylases (CYP9T2 and CYP9T3) from reproductively-isolated western and eastern I. pini. The two cytochromes P450 share 94% amino acid identity. CYP9T2 mRNA levels were not induced in adults exposed to myrcene-saturated atmosphere. Functional assays of recombinant enzymes showed both hydroxylated myrcene, (+)- and (?)-α-pinene, 3-carene, and R-(+)-limonene, but not α-phellandrene, (?)-β-pinene, γ-terpinene, or terpinolene, with evidence that CYP9T2 strongly preferred myrcene over other substrates. They differed in the enantiomeric ratios of ipsdienol produced from myrcene, and in the products resulting from different α-pinene enantiomers. These data provide new information regarding bark beetle pheromone evolution and factors affecting cytochrome P450 structure–function relationships.  相似文献   

2.
3.
Males of Ips spp. produced the pheromones ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol) and/or ipsenol (2-methyl-6-methylene-7-octen-4-ol) when exposed to vapours of myrcene, a monoterpene present in their hosts (Pinus spp.). Ips grandicollis and Ips calligraphus require feeding before metabolizing the myrcene, whereas Ips avulsus and Ips paraconfusus produce some pheromone without prior feeding. Topical treatment with ipsdienol results in ipsenol production in both fed and unfed I. paraconfusus males but only in fed I. gradicollis males. I. calligraphus males, which do not produce ipsenol in nature, did not produce any with the topical treatment regardless of prior conditioning. It is concluded that myrcene can serve as a precursor for these terpene alcohols and suggested that ipsenol is produced by the reduction of ipsdienol. Furthermore, the biosynthesis of these pheromones appears to be under some form of control in certain species, with the stimulus for production occurring upon feeding.  相似文献   

4.
The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini have much higher basal levels than in females, and feeding induces their expression. In I. duplicatus and I. pini, juvenile hormone III (JH III) induces pheromone production in the absence of feeding, whereas in I. paraconfusus and I. confusus, topically applied JH III does not induce pheromone production. In all four species, feeding induces pheromone production. While many of the details of pheromone production, including the site of synthesis, pathways and knowledge of the enzymes involved are known for Ips, less is known about pheromone production in Dendroctonus. Functional genomics studies are under way in D. ponderosae, which should rapidly increase our understanding of pheromone production in this genus. This chapter presents a historical development of what is known about pheromone production in bark beetles, emphasizes the genomic and post-genomic work in I. pini and points out areas where research is needed to obtain a more complete understanding of pheromone production.  相似文献   

5.
Abstract:  Semiochemical interactions between the spruce bark beetle Ips typographus , its predators Medetera setiventris , Thanasimus formicarius and Thanasimus femoralis , and the host Norway spruce, Picea abies , were studied in the field. The chemicals S - cis -verbenol, 2-methyl-3-buten-2-ol, ipsdienol, (+)- α -pinene, (−)- α -pinene, (±)- α -pinene, limonene, camphor and their naturally occuring mixtures were used as trap baits in a multiple-choice design that allowed for comparison of their attractivity for the focal species. Medetera was attracted to both the prey aggregation pheromone and its multifunctional component, ipsdienol. On the contrary, both Thanasimus species responded predominantly to ipsdienol and less to the prey aggregation pheromone. In the case of I. typographus , the attractivity of aggregation pheromone seems to be increased by the addition of a mixture of monoterpenic tree volatiles, and by addition of ipsdienol. Bark beetles and predators showed species-specific responses to volatile mixtures representing different stages of tree decay and different stages of bark beetle colony establishment. These responses correlates with the optimal foraging habitat of each species. None of the predator species responded to 2-methyl-3-buten-2-ol, a substantial component of I. typographus pheromonal bouquet, thus it is hypothesized that only substances of monoterpenic origin attract predators.  相似文献   

6.
ABSTRACT. Exposure of newly emerged Ips cembrae adults to myrcene vapour resulted in the production of ipsenol and ipsdienol by males, in quantities comparable to those found during natural attack of larch trees. Treatment of male beetles with juvenile hormone analogue (JHA) triggered production of 3-mefhyl-3-buten-l-ol, the third component of the aggregation pheromone complex. The beetles are therefore capable of producing ipsenol and ipsdienol immediately upon contact with host resin, whereas methylbutenol production appears to be hormonally controlled upon the initiation of feeding. Beetles exposed to the enantiomers of ipsdienol apparently utilized only (R)-(—) ipsdienol to synthesize ipsenol, suggesting a high degree of chiral selectivity.  相似文献   

7.
Upon exposure to vapours of the host tree's monoterpene (–)--pinene, Ips acuminatus produces the terpene alcohol cis-verbenol which, besides ipsdienol and ipsenol, is a component of its aggregation pheromone. I. cembrae transforms the same monoterpene predominantly into myrtenol and trans-verbenol but little into cis-verbenol, which interrupts pheromone response under field conditions.On the other hand, I. cembrae releases, upon feeding in the bark, the terpene alcohol amitinol in major amounts. Amitinol significantly enhances field response to the aggregation pheromone that also includes ipsdienol, ipsenol, and 3-methyl-3-buten-1-ol. However, amitinol reduces pheromone response in I. acuminatus and I. erosus. Also, males of I. sexdentatus release amitinol which appears to increase response to its attractive principle pheromone component, racemic ipsdienol. There is some evidence that present knowledge of the chemical communication systems among European Ips spp. still lacks satisfactory explanation of the naturally occuring aggregation en masse, perhaps with the exception of I. erosus and I. typographus.  相似文献   

8.
Exposure of adult males and females of Dendroctonus brevicomis and D. frontalis to camphene vapor resulted in oxidation of the terpene to a prominent product, which was identified as 6-hydroxy-camphene (camphenol). Exposure of D. brevicomis adults to myrcene vapor resulted in sex-specific oxidation of the hydrocarbon. A major product in both sexes was identified as 2-methyl-6-methylene-2,7-octadien-1-ol (myrcenol), whereas ipsdienol, a major product in males, was not detected in females. A compound detected in hindguts of feeding males of Ips pini and I. paraconfusus was attributed to the presence of 3-carene in the host (Pinus spp.) and subsequently identified as 1-methyl-5-(α-hydroxy-isopropyl)-cyclohexa-1,3-diene.  相似文献   

9.
Pine-feeding bark beetles (Coleoptera: Scolytidae) interact chemically with their host pines (Coniferales: Pinaceae) via the behavioral, physiological, and biochemical effects of one class of isoprenoids, the monoterpenes and their derivatives. Pine monoterpenes occur in the oleoresin and function as behaviorally active kairomones for pine bark beetles and their predators, presenting a classic example of tri-trophic chemical communication. The monoterpenes are also essential co-attractants for pine bark beetle aggregation pheromones. Ironically, pine monoterpenes are also toxic physiologically to bark beetles at high vapor concentrations and are considered an important component of the defense of pines. Research over the last 30 years has demonstrated that some bark beetle aggregation pheromones arise through oxygenation of monoterpenes, linking pheromone biosynthesis to the host pines. Over the last 10 years, however, several frequently occurring oxygenated monoterpene pheromone components (e.g., ipsenol, ipsdienol and frontalin) have also been shown to arise through highly regulated de novo pathways in the beetles (reviewed in Seybold and Tittiger, 2003). The most interesting nexus between these insects and their plant hosts involves the late-stage reactions in the monoterpenoid biosynthetic pathway, during which isomeric dimethylallyl diphosphate and isopentenyl diphosphate are ultimately elaborated to stereospecific monoterpenes in the trees and to hydroxylated monoterpenes or bicyclic acetals in the insects. There is signal stereospecificity in both production of and response to the monoterpenoid aggregation pheromones of bark beetles and in response to␣the monoterpenes of the pines. In the California fivespined ips, Ips paraconfusus, we have discovered a number of cytochome P450 genes that have expression patterns indicating that they may be involved in detoxifying monoterpene secondary metabolites and/or biosynthesizing pheromone components. Both processes result in the production of oxygenated monoterpenes, likely with varying degrees of stereospecificity. A behavioral analysis of the stereospecific response of I. paraconfusus to its pheromone is providing new insights into the development of an efficacious bait for the detection of this polyphagous insect in areas outside the western United States. In contrast, a Eurasian species that has arrived in California, the Mediterranean pine engraver, Orthotomicus (Ips) erosus, utilizes both a monoterpenoid (ipsdienol) and a hemiterpenoid (2-methyl-3-buten-2-ol) in its pheromone blend. The stereospecificity of the response of O. erosus to the monoterpenoid appears to be the key factor to the improved potency of the attractant bait for this invasive species.Dedicated to Professor David L. Wood on the occasion of his 75th birthday, January 8, 2006  相似文献   

10.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   

11.
1 Populations of Ips pini (Say) in northern Arizona and western Montana, U.S.A., were studied to determine regional pheromone response and to evaluate seasonal shifts in that response. A range of enantiomeric blends of the attractant ipsdienol, alone and in the presence of the synergist lanierone, were tested during spring and summer seasons over several years.
2 Both populations were most attracted to high levels of ( R )-(–)-ipsdienol, and lanierone was highly synergistic.
3 A significant seasonal shift in pheromone response between spring and summer seasons was found in both regions in both years. Shifts resulted in a more specific preference for the pheromone treatment of 97% ( R )-(–)-ipsdienol with lanierone.
4 Several coleopteran insect associates of I. pini also displayed responses to the ipsdienol and lanierone treatments. Temnochila chlorodia (Mannerheim) (Trogositidae), Enoclerus sphegeus (F.) (Cleridae) and, to a limited extent, Lasconotus laqueatus (LeConte) (Colydiidae) were attracted to higher proportions of ( R )-(–)-ipsdienol with no apparent reaction to the presence of lanierone. Orthotomicus latidens (LeConte) (Curculionidae: Scolytinae) was strongly attracted to ( S )-(+)-ipsdienol with Enoclerus lecontei (Wolcott) (Cleridae), Pityogenes carinulatus (LeConte) (Curculionidae: Scolytinae) and Hylurgops porosus (LeConte) (Curculionidae: Scolytinae) demonstrating some preferences for the ( S )-(+)-enantiomer. However, lanierone was synergistic for E. lecontei and P. carinulatus , inhibitory for O. latidens , and produced no significant reaction for H. porosus . Elacatis sp. (Salpingidae, previously Othniidae) was attracted to the presence of ipsdienol but displayed no preference to the enantiomeric ratios of ipsdienol or the presence of lanierone.  相似文献   

12.
Capsidiol is a bicyclic, dihydroxylated sesquiterpene produced by several solanaceous species in response to a variety of environmental stimuli. It is the primary antimicrobial compound produced by Nicotiana tabacum in response to fungal elicitation, and it is formed via the isoprenoid pathway from 5-epi-aristolochene. Much of the biosynthetic pathway for the formation of this compound has been elucidated, except for the enzyme(s) responsible for the conversion of 5-epi-aristolochene to its dihydroxylated form, capsidiol. Biochemical evidence from previous studies with N. tabacum (Whitehead, I. M., Threlfall, D. R., and Ewing, D. F., 1989, Phytochemistry 28, 775-779) and Capsicum annuum Hoshino, T., Yamaura, T., Imaishi, H., Chida, M., Yoshizawa, Y., Higashi, K., Ohkawa, H., Mizutani, J., 1995, Phytochemistry 38, 609-613. suggested that the oxidation of 5-epi-aristolochene to capsidiol was mediated by at least one elicitor-inducible cytochrome P450 hydroxylase. In extending these observations, we developed an in vivo assay for 5-epi-aristolochene hydroxylase activity and used it to demonstrate a dose-dependent inhibition of activity by ancymidol and ketoconazole, two well characterized inhibitors of cytochrome P450 enzymes. Using degenerate oligonucleotide primers designed to the well conserved domains found within most P450 enzymes, including the heme binding domain, cDNA fragments representing four distinct P450 families (CYP71, CYP73, CYP82, and CYP92) were amplified from a cDNA library prepared against mRNA from elicitor-treated cells using PCR. The PCR fragments were subsequently used to isolate full-length cDNAs (CYP71D20 and D21, CYP73A27 and A28, CYP82E1 and CYP92A5), and these in turn were used to demonstrate that the corresponding mRNAs were all induced in elicitor-treated cells, albeit with different induction patterns. Representative, full-length cDNAs for each of the P450s were engineered into a yeast expression system, and the recombinant yeast assessed for functional expression of P450 protein by measuring the CO difference spectra of the yeast microsomes. Only microsomal preparations from yeast expressing the CYP71D20 and CYP92A5 cDNAs exhibited significant CO difference absorbance spectra at 450 nm and were thus tested for their ability to hydroxylate 5-epi-aristolochene and 1-deoxycapsidiol, a putative mono-hydroxylated intermediate in capsidiol biosynthesis. Interestingly, the CYP71D20-encoded enzyme activity was capable of converting both 5-epi-aristolochene and 1-deoxycapsidiol to capsidiol in vitro, consistent with the notion that this P450 enzyme catalyzes both hydroxylations of its hydrocarbon substrate.  相似文献   

13.
14.
Cytochrome P450s constitute a superfamily of hemoproteins, important in the metabolism of endogenous and xenobiotic compounds. The full-length cDNA of a novel cytochrome P450, CYP9G2, was isolated from a cDNA library. The cDNA is 2143 bp in length and contains an open reading frame from 50 to 1615 bp, encoding a protein of 521 amino acid residues. The putative P450 protein contains a highly hydrophobic N terminus and a P450 protein signature motif, FG/S*G*R*C*G***A/G, known as the important ligand for heme binding, analysis of the NH2-terminal sequence indicated that CYP9G2 is a microsomal P450. Using polymerase chain reaction with primers specific to CYP9G2, the genomic structure of CYP9G2 was analyzed, and it was found that the gene contains seven introns and eight exons within the coding region, all the sequences of the exon-intron junctions are consistent with the AG-GT rule. Multiple alignment indicated that CYP9G2 is most similar to CYP9E2 from the Blattella germanica (42.7% identity), it is also similar to the insect P450s in family 9, including CYP9L1 from Anopheles gambiae (38.7%) and CYP9A1 from Heliothis virescens (39.5%).  相似文献   

15.
16.
旨在对鸡细胞色素P450 1A5(CYP1A5)蛋白进行体外功能研究,采用大肠杆菌系统进行CYP1A5的异源表达。以鸡的cDNA为模板,扩增出CYP1A5基因,将该基因的N端编码区进行修饰,并连接到pCW载体中构建His-CYP1A5,经IPTG诱导在大肠杆菌中表达。经CO-差示光谱检测,所获得的His-CYP1A5具有典型的P450吸收峰。该蛋白与细胞色素P450还原酶(CPR)进行体外重组,构成的重组酶系表现出乙氧基试卤灵-O-脱乙基酶活性。结果表明,所采用的表达策略可以成功产生出具有催化活性的鸡细胞色素P450 1A5(CYP1A5)蛋白。  相似文献   

17.
The pheromonal components, ipsenol and ipsdienol were found in increasing quantities in hindguts of only the male sex of Ips paraconfusus following exposure of both sexes to a series of increasing concentrations of myrcene vapour. Hindguts of female and male beetles contained similar quantities of myrcene and other volatile compounds associated with myrcene exposure. Unexposed beetles of both sexes did not contain detectable amounts of any volatile compound. This indicates that myrcene induces or is a precursor for sex-specific pheromone biosynthesis.  相似文献   

18.
19.
We cloned a new cytochrome P450 cDNA encoding testosterone 7alpha-hydroxylase in the Chinese hamster, designated CYP2A15 which shares significant amino acid sequence homology with members of the CYP2A subfamily. The CYP2A15 cDNA was isolated by screening a liver cDNA library and the sequence contains an open reading frame of 1482 nucleotides encoding a polypeptide of 493 amino acids with a calculated molecular mass of 56,295 Da. This is flanked by a 5'-untranslated region of 2 bp and a 3' untranslated region of 191 bp including the poly(A) tail. We determined the catalytic activity of CYP2A15 using microsomes obtained by transient expression of its cDNA in transfected COS-7 cells. The heterologously expressed CYP2A15 was found to hydroxylate testosterone at position 7alpha in a reconstituted system. RT-PCR experiments revealed that the mRNA of CYP2A15 was expressed in liver, but not detected in kidney, lung, or small intestine. The expression of CYP2A15 mRNA was slightly induced by treatment with either rifampicin or 3-methylcholanthrene.  相似文献   

20.
1 The mountain pine beetle Dendroctonus ponderosae is a major tree‐killing bark beetle in North America. We evaluated how the subsequent arrival of a competing bark beetle Ips pini influences the arrival of predators and their impact on both species. 2 The predators Temnochila chlorodia and Enoclerus sphegeus were strongly attracted to pheromones of D. ponderosae. By contrast, Enoclerus lecontei was mostly attracted to I. pini pheromones. The host compound myrcene synergized attraction of both D. ponderosae and E. sphegeus to the pheromone of D. ponderosae. However, it inhibited attraction of both I. pini and E. lecontei to I. pini’s pheromone. 3 Dendroctonus ponderosae were more attracted to trees than logs treated with its pheromones, whereas I. pini were more attracted to logs than trees treated with its pheromones. Some 78% of T. chlorodia were captured at hosts baited with D. ponderosae pheromones, whereas 83% of E. lecontei were captured at hosts baited with I. pini pheromones. We characterized the sequence of arrival to live trees baited with pheromones of D. ponderosae as: D. ponderosae, T. chlorodia, E. sphegeus, I. pini, E. lecontei. 4 Various combinations of I. pini and predators were added to logs colonized by D. ponderosae in the above sequence of arrival observed in live trees baited with D. ponderosae aggregation pheromones. Ips pini reduced D. ponderosae adult brood production. However, the combination of I. pini and E. lecontei did not raise D. ponderosae brood production above that observed with only I. pini present. Similarly, the combination of I. pini and T. chlorodia did not reduce D. ponderosae brood production below that observed with I. pini alone. By contrast, the combination of I. pini, T. chlorodia and E. lecontei caused more brood loss to D. ponderosae than I. pini alone. 5 Enoclerus lecontei did not reduce brood production by T. chlorodia, whereas T. chlorodia substantially reduced brood production by E. lecontei. 6 Secondary bark beetles that exploit the resource created by primary tree‐killing species exert negative effects through both competition and increased predator load. Implications to the population dynamics, ecology and evolution of tree‐killing bark beetles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号