首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly and maturation of the coat protein of a T=4, nonenveloped, single-stranded RNA virus, Nudaurelia capensis omega virus (N omega V), was examined by using a recombinant baculovirus expression system. At pH 7.6, the coat protein assembles into a stable particle called the procapsid, which is 450 A in diameter and porous. Lowering the pH to 5.0 leads to a concerted reorganization of the subunits into a 410-A-diameter particle called the capsid, which has no obvious pores. This conformational change is rapid but reversible until slow, autoproteolytic cleavage occurs in at least 15% of the subunits at the lower pH. In this report, we show that expression of subunits with replacement of Asn-570, which is at the cleavage site, with Thr results in assembly of particles with expected morphology but that are cleavage defective. The conformational change from procapsid to capsid is reversible in N570T mutant virus-like particles, in contrast to wild-type particles, which are locked into the capsid conformation after cleavage of the coat protein. The reexpanded procapsids display slightly different properties than the original procapsid, suggesting hysteretic effects. Because of the stability of the procapsid under near-neutral conditions and the reversible properties of the cleavage-defective mutant, N omega V provides an excellent model for the study of pH-induced conformational changes in macromolecular assemblies. Here, we identify the relationship between cleavage and the conformational change and propose a pH-dependent helix-coil transition that may be responsible for the structural rearrangement in N omega V.  相似文献   

2.
将蓝舌病毒(BTV)13型S7与L3基因同时插入杆状病毒双表达载体pEastBacDual,获得重组杆状病毒rvBacBTVP37。该病毒在昆虫细胞中同时高水平表达BTV13 VP3与VP7蛋白,可以高效自动装配出20面体的60 ̄70nm空心颗粒。分析表明,所获颗粒为空心的BTV核心样颗粒(CLP),其成分为VP3与VP7,不含BTV其它任何蛋白与核酸。这种装配需要VP3与VP7的共同参与,二者缺  相似文献   

3.
Protein subunits of several RNA viruses are known to undergo post-assembly, autocatalytic cleavage that is required for infectivity. Nudaurelia capensis omega virus (Nomega V) is one of the simplest viruses to undergo an autocatalytic cleavage, making it an excellent model to understand both assembly and the mechanism of autoproteolysis. Heterologous expression of the coat protein gene of Nomega V in a baculovirus system results in the spontaneous assembly of virus-like particles (VLPs) that remain uncleaved when purified at neutral pH. After acidification to pH 5.0, the VLPs autocatalytically cleave at residue 570, providing an in vitro control of the cleavage. The crystal structure of Nomega V displays three residues near the scissile bond that were candidates for participation in the reaction. These were changed by site-directed mutagenesis to conservative and nonconservative residues and the products analyzed. Even conservative changes at the three residues dramatically reduced cleavage when the subunits assembled properly. Unexpectedly, we discovered that these residues are not only critical to the kinetics of Nomega V autoproteolysis, but are also necessary for proper folding of subunits and, ultimately, assembly of Nomega V VLPs.  相似文献   

4.
The genome of some icosahedral RNA viruses plays an essential role in capsid assembly and structure. In T=3 particles of the nodavirus Pariacoto virus (PaV), a remarkable 35% of the single-stranded RNA genome is icosahedrally ordered. This ordered RNA can be visualized at high resolution by X-ray crystallography as a dodecahedral cage consisting of 30 24-nucleotide A-form RNA duplex segments that each underlie a twofold icosahedral axis of the virus particle and interact extensively with the basic N-terminal region of 60 subunits of the capsid protein. To examine whether the PaV genome is a specific determinant of the RNA structure, we produced virus-like particles (VLPs) by expressing the wild-type capsid protein open reading frame from a recombinant baculovirus. VLPs produced by this system encapsidated similar total amounts of RNA as authentic virus particles, but only about 6% of this RNA was PaV specific, the rest being of cellular or baculovirus origin. Examination of the VLPs by electron cryomicroscopy and image reconstruction at 15.4-A resolution showed that the encapsidated RNA formed a dodecahedral cage similar to that of wild-type particles. These results demonstrate that the specific nucleotide sequence of the PaV genome is not required to form the dodecahedral cage of ordered RNA.  相似文献   

5.
Webb JH  Mayer RJ  Dixon LK 《FEBS letters》1999,444(1):136-139
An anti-ubiquitin cross-reactive protein which migrates more slowly (6.5 kDa) by SDS-PAGE than ubiquitin was identified in African swine fever virus particles. This protein was extracted into the detergent phase in Triton X-114 phase separations, showing that it is hydrophobic, and was radiolabelled with both [3H]palmitic acid and [32P]orthophosphate. This indicates that the protein has a similar structure to the membrane associated phosphatidyl ubiquitin described in baculovirus particles. A similar molecule was found in vaccinia virus and herpes simplex virus particles, suggesting that it may be a component of uninfected cell membranes, which is incorporated into membrane layers in virions during morphogenesis.  相似文献   

6.
Insect cells are widely used for expression of a variety of different proteins by using the baculovirus expression system. The applicability of this system depends on production of proteins which have biological properties similar to their native counterparts. One application has been the expression of viral capsid proteins and their assembly into empty capsid structures to provide new viral immunogens which retain complex antigenic sites. An important parameter for efficient folding and assembly of proteins into viral procapsids may be the intracellular pH, particularly for acid-labile particles such as foot-and-mouth disease virus (FMDV). Benzoic acid was used as an effective indicator of intracellular pH in insect cells and 3-O-methyl glucose to measure cell volumes. We have determined the intracellular volume of theSpodoptera frugiperda IPLB-Sf21 insect cells 0.50±0.08 pL per cell. Using the distribution of [14C]-benzoic acid, we show that the intracellular pH remains constant at pH 7.0 when the cells are grown in media with pH values ranging from 6.2 to 6.8 and, moreover, is not affected by baculovirus infection. These results suggest that insect cells are suitable to express and produce acid-labile structures via the baculovirus expression system and that assembly of proteins and viral procapsids could occur.  相似文献   

7.
Infectious bursal disease virus (IBDV) is a nonenveloped avian virus with a two-segment double-stranded RNA genome. Its T=13 icosahedral capsid is most probably assembled with 780 subunits of VP2 and 600 copies of VP3 and has a diameter of about 60 nm. VP1, the RNA-dependent RNA polymerase, resides inside the viral particle. Using a baculovirus expression system, we first observed that expression of the pVP2-VP4-VP3 polyprotein encoded by the genomic segment IBDA results mainly in the formation of tubules with a diameter of about 50 nm and composed of pVP2, the precursor of VP2. Very few virus-like particles (VLPs) and VP4 tubules with a diameter of about 25 nm were also identified. The inefficiency of VLP assembly was further investigated by expression of additional IBDA-derived constructs. Expression of pVP2 without any other polyprotein components results in the formation of isometric particles with a diameter of about 30 nm. VLPs were observed mainly when a large exogeneous polypeptide sequence (the green fluorescent protein sequence) was fused to the VP3 C-terminal domain. Large numbers of VLPs were visualized by electron microscopy, and single particles were shown to be fluorescent by standard and confocal microscopy analysis. Moreover, the final maturation process converting pVP2 into the VP2 mature form was observed on generated VLPs. We therefore conclude that the correct scaffolding of the VP3 can be artificially induced to promote the formation of VLPs and that the final processing of pVP2 to VP2 is controlled by this particular assembly. To our knowledge, this is the first report of the engineering of a morphogenesis switch to control a particular type of capsid protein assembly.  相似文献   

8.
Although processing of the hepatitis C virus (HCV) polyprotein and characterization of each of its viral proteins have been described in detail, analysis of the structure and assembly of HCV particles has been hampered by the lack of a robust cell culture system to support efficient replication of HCV. In this study, we generated HCV-like particles (HCV-LP) using a recombinant baculovirus encoding structural and a part of non-structural proteins in a human hepatoma cell line. The HCV-LP exhibited a buoyant density of 1.17 g/ml in CsCl equilibrium gradient and particles of 40 to 50 nm in diameter. Binding of the HCV-LP to human hepatoma cells was partially inhibited by the treatment with anti-hCD81 antibody, in contrast to the hCD81-independent binding of HCV-LP produced in insect cells. These results indicate that HCV-LP generated in different types of cells exhibit different cellular tropism for binding to target cells.  相似文献   

9.
H Le Blois  B Fayard  T Urakawa    P Roy 《Journal of virology》1991,65(9):4821-4831
A functional assay has been developed to determine the conservative nature of the interacting sites of various structural proteins of orbiviruses by using baculovirus expression vectors. For this investigation, proteins of two serologically related orbiviruses, bluetongue virus (BTV) and the less studied epizootic hemorrhagic disease virus (EHDV), were used to synthesize chimeric particles. The results demonstrate that the inner capsid protein VP3 of EHDV-1 can replace VP3 protein of BTV in formation of the single-shelled corelike particles and the double-shelled viruslike particles. Moreover, we have demonstrated that all three minor core proteins (VP1, VP4, and VP6) can be incorporated into the homologous and chimeric corelike and viruslike particles, indicating that the functional epitopes of the VP3 protein are conserved for the morphological events of the virus. This is the first evidence of assembly of seven structural proteins of the virus by a baculovirus expression system. Confirmation at the molecular level was obtained by determining the EHDV-1 L3 gene nucleic sequence and by comparing it with sequences available for BTV. The analysis revealed a high degree homology between the two proteins: 20% difference, 50% of which is conservative. The consequences for Orbivirus phylogeny and the possibility of gene reassortments are discussed.  相似文献   

10.
The capsid of hepatitis C virus (HCV) particles is considered to be composed of the mature form (p21) of core protein. Maturation to p21 involves cleavage of the transmembrane domain of the precursor form (p23) of core protein by signal peptide peptidase (SPP), a cellular protease embedded in the endoplasmic reticulum membrane. Here we have addressed whether SPP-catalyzed maturation to p21 is a prerequisite for HCV particle morphogenesis in the endoplasmic reticulum. HCV structural proteins were expressed by using recombinant Semliki Forest virus replicon in mammalian cells or recombinant baculovirus in insect cells, because these systems have been shown to allow the visualization of HCV budding events and the isolation of HCV-like particles, respectively. Inhibition of SPP-catalyzed cleavage of core protein by either an SPP inhibitor or HCV core mutations not only did not prevent but instead tended to facilitate the observation of viral buds and the recovery of virus-like particles. Remarkably, although maturation to p21 was only partially inhibited by mutations in insect cells, p23 was the only form of core protein found in HCV-like particles. Finally, newly developed assays demonstrated that p23 capsids are more stable than p21 capsids. These results show that SPP-catalyzed cleavage of core protein is dispensable for HCV budding but decreases the stability of the viral capsid. We propose a model in which p23 is the form of HCV core protein committed to virus assembly, and cleavage by SPP occurs during and/or after virus budding to predispose the capsid to subsequent disassembly in a new cell.  相似文献   

11.
H D Klenk  W Garten  R Rott 《The EMBO journal》1984,3(12):2911-2915
At calcium-specific ionophore A23187 concentrations of approximately 0.25 microM [which still allow assembly and release of fowl plague virus (FPV) particles] post-translational proteolytic cleavage of the viral hemagglutinin precursor HA into the fragments HA1 and HA2 is inhibited. The resulting virus particles with uncleaved hemagglutinin, that cannot be obtained under normal conditions, provide a suitable substrate for in vitro assays of the protease sensitivity of the FPV hemagglutinin. Proteolytic activation is accomplished with trypsin. Treatment with cathepsin B at low pH yields aberrant cleavage products suggesting that the cellular cleavage enzyme is not of lysosomal origin. A protease that cleaves the FPV hemagglutinin in the correct place can be detected in lysates of MDBK cells. This enzyme is calcium dependent and has a neutral pH optimum.  相似文献   

12.
Flock house virus (FHV) is a small icosahedral insect virus of the family Nodaviridae. Its genome consists of two messenger-sense RNA molecules, both of which are encapsidated in the same particle. RNA1 (3.1 kb) encodes proteins required for viral RNA replication; RNA2 (1.4 kb) encodes protein alpha (43 kDa), the precursor of the coat protein. When Spodoptera frugiperda cells were infected with a recombinant baculovirus containing a cDNA copy of RNA2, coat protein alpha assembled into viruslike precursor particles (provirions) that matured normally by autocatalytic cleavage of protein alpha into polypeptide chains beta (38 kDa) and gamma (5 kDa). The particles were morphologically indistinguishable from authentic FHV and contained RNA derived from the coat protein message. These results showed that RNA1 was required neither for virion assembly nor for maturation of provirions. Expression of mutants in which Asn-363 at the beta-gamma cleavage site of protein alpha was replaced by either aspartate, threonine, or alanine resulted in assembly of particles that were cleavage defective. For two of the mutants, unusual structural features were observed after preparation for electron microscopy. Particles containing Asp at position 363 were labile and showed a strong tendency to break into half-shells. Particles in which Asn-363 was replaced by Ala displayed a distinct hole in an otherwise complete shell. The third mutant, containing Thr at position 363, was indistinguishable in morphology from authentic FHV.  相似文献   

13.
Bluetongue virus (BTV) forms tubules in infected mammalian cells. These tubules are virally encoded entities which can be formed with only one protein, NS1. The NS1 protein does not form a part of virus particles, and its function in viral infection is uncertain. Expression of the NS1 gene in insect cells by recombinant baculovirus yields high amounts of NS1 tubules (ca. 50% of cellular proteins) which are morphologically and immunologically similar to authentic BTV NS1 and can be isolated to about 90% purity. The structure of these synthetic NS1 tubules was investigated by cryoelectron microscopy. NS1 tubules are on average 52.3 nm in diameter and up to 100 nm long. The structure of their helical surface lattice has been determined using computer image processing to a resolution of 40 A. The NS1 protein is about 5.3 nm in diameter and forms a dimer-like structure, so that the tubules are composed of helically coiled ribbons of NS1 "dimers," with 21 or 22 dimers per turn. The surface lattice displays P2 symmetry and forms a one-start helix with a pitch of 9.1 nm. The NS1 tubules exist in two slightly different pH-dependent conformational states.  相似文献   

14.
The vesivirus feline calicivirus (FCV) is a positive strand RNA virus encapsidated by an icosahedral T=3 shell formed by the viral VP1 protein. Upon its expression in the insect cell - baculovirus system in the context of vaccine development, two types of virus-like particles (VLPs) were formed, a majority built of 60 subunits (T=1) and a minority probably built of 180 subunits (T=3). The structure of the small particles was determined by x-ray crystallography at 0.8 nm resolution helped by cryo-electron microscopy in order to understand their formation. Cubic crystals belonged to space group P213. Their self-rotation function showed the presence of an octahedral pseudo-symmetry similar to the one described previously by Agerbandje and co-workers for human parvovirus VLPs. The crystal structure could be solved starting from the published VP1 structure in the context of the T=3 viral capsid. In contrast to viral capsids, where the capsomers are interlocked by the exchange of the N-terminal arm (NTA) domain, this domain is disordered in the T=1 capsid of the VLPs. Furthermore it is prone to proteolytic cleavage. The relative orientation of P (protrusion) and S (shell) domains is alerted so as to fit VP1 to the smaller T=1 particle whereas the intermolecular contacts around 2-fold, 3-fold and 5-fold axes are conserved. By consequence the surface of the VLP is very similar compared to the viral capsid and suggests a similar antigenicity. The knowledge of the structure of the VLPs will help to improve their stability, in respect to a use for vaccination.  相似文献   

15.
Flaviviruses assemble in the endoplasmic reticulum by a mechanism that appears to be driven by lateral interactions between heterodimers of the envelope glycoproteins E and prM. Immature intracellular virus particles are then transported through the secretory pathway and converted to their mature form by cleavage of the prM protein by the cellular protease furin. Earlier studies showed that when the prM and E proteins of tick-borne encephalitis virus are expressed together in mammalian cells, they assemble into membrane-containing, icosahedrally symmetrical recombinant subviral particles (RSPs), which are smaller than whole virions but retain functional properties and undergo cleavage maturation, yielding a mature form in which the E proteins are arranged in a regular T = 1 icosahedral lattice. In this study, we generated immature subviral particles by mutation of the furin recognition site in prM. The mutation resulted in the secretion of two distinct size classes of particles that could be separated by sucrose gradient centrifugation. Electron microscopy showed that the smaller particles were approximately the same size as the previously described mature RSPs, whereas the larger particles were approximately the same size as the virus. Particles of the larger size class were also detected with a wild-type construct that allowed prM cleavage, although in this case the smaller size class was far more prevalent. Subtle differences in endoglycosidase sensitivity patterns suggested that, in contrast to the small particles, the E glycoproteins in the large subviral particles and whole virions might be in nonequivalent structural environments during intracellular transport, with a portion of them inaccessible to cellular glycan processing enzymes. These proteins thus appear to have the intrinsic ability to form alternative assembly products that could provide important clues about the role of lateral envelope protein interactions in flavivirus assembly.  相似文献   

16.
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.  相似文献   

17.
The virion of Leishmania RNA virus is predicted to be composed of a 742-amino-acid major capsid protein and a small percentage of capsid-polymerase fusion molecules. Recently, the capsid protein alone was expressed and shown to spontaneously assemble into viruslike particles. Since the major structural protein of the virion shell self-assembles into viruslike particles when expressed in the baculovirus expression system, assembly of the virion can be studied by mutational analysis and expression of a single open reading frame. In this study, several deletions and one addition of the capsid protein of Leishmania RNA virus LRV1-4 were generated. These mutants show different degrees of assembly. Assembly domains are being identified such that the capsid protein may be used as a macromolecular packaging and delivery system for Leishmania species.  相似文献   

18.
C Reynolds  D Birnby    M Chow 《Journal of virology》1992,66(3):1641-1648
Poliovirus mutants in neutralizing antigenic site 3B were constructed by replacing the glutamic acid residue at amino acid 74 of capsid protein VP2 (VP2074E), using site-specific mutagenesis methods. All viable mutants display small-plaque phenotypes. Characterization of these mutants indicates that capsid assembly is perturbed. Although the defect in capsid assembly reduces the yield of mutant virus particles per cell, the resultant assembled particle is wild-type-like in structure and infectivity. Analyses of capsid assembly intermediates show a transient accumulation of the unprocessed capsid protein precursor, P1, indicating that cleavage of the mutant P1 by the 3CD protease is retarded. The mutant VP0-VP3-VP1 complex generated upon P1 cleavage appears assembly competent, forming pentamer and empty capsid assembly intermediates and infectious virion particles. Although the structure of the infectious mutant virus is virtually identical with that of the wild-type virus, the thermal stability of the mutant virus is dramatically increased over that of the wild-type virus. Thus, mutations at this residue are pleiotropic, altering the kinetics of capsid assembly and generating a virus that is more thermostable and more resistant to neutralization by the site 3B monoclonal antibodies.  相似文献   

19.
Baculovirus has emerged as a novel gene delivery and vaccine vector, and the demand for purified baculovirus is rising due to the increasing in vivo applications. Since the baculoviral envelope protein gp64 is a glycoprotein, we aimed to develop a concanavalin A (Con A) chromatography process, which harnessed the possible affinity interaction between gp64 and Con A, for simple and effective baculovirus purification. Throughout the purification process the virus stability and recovery were assessed by quantifying the virus transducing titers [TT, defined as transducing units (TU) per milliliter] and viral particles (VP). We found that baculovirus stability was sensitive to buffer conditions and diafiltration with a tangential flow filtration system LabScale using 300 K membranes yielded recoveries of ≈75% in TT and 82% in VP. The diafiltered baculovirus strongly bound to the Con A column as evidenced by the low virus losses to the flow through and wash fractions. The wash steps eliminated >99% of protein impurities and elution with 0.6 M α‐D ‐methylmannoside at room temperature led to the recoveries of ≈16% in VP and ≈15.3% in TU. The resultant VP/TU ratio was as low as 41.4, attesting the high quality of the purified virus. Further elution with 1 M α‐D ‐methylmannoside recovered another 6% virus TU, yielding a cumulative recovery of ≈21.3% in TU. These data demonstrated for the first time that Con A chromatography is suitable for baculovirus purification, and may be used for the purification of other viruses with surface glycoproteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
A conformational switch controlling HIV-1 morphogenesis   总被引:1,自引:0,他引:1  
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) proceeds in two steps. Initially, an immature virus with a spherical capsid shell consisting of uncleaved Gag polyproteins is formed. Extracellular proteolytic maturation causes rearrangement of the inner virion structure, leading to the conical capsid of the infectious virus. Using an in vitro assembly system, we show that the same HIV-1 Gag-derived protein can form spherical particles, virtually indistinguishable from immature HIV-1 capsids, as well as tubular or conical particles, resembling the mature core. The assembly phenotype could be correlated with differential binding of the protein to monoclonal antibodies recognizing epitopes in the HIV-1 capsid protein (CA), suggesting distinct conformations of this domain. Only tubular and conical particles were observed when the protein lacked spacer peptide SP1 at the C-terminus of CA, indicating that SP1 may act as a molecular switch, whose presence determines spherical capsid formation, while its cleavage leads to maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号