首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce the concept of a contracting excitable medium that is capable of conducting non-linear waves of excitation that in turn initiate contraction. Furthermore, these kinematic deformations have a feedback effect on the excitation properties of the medium. Electrical characteristics resemble basic models of cardiac excitation that have been used to successfully study mechanisms of reentrant cardiac arrhythmias in electrophysiology. We present a computational framework that employs electromechanical and mechanoelectric feedback to couple a three-variable FitzHugh–Nagumo-type excitation-tension model to the non-linear stress equilibrium equations, which govern large deformation hyperelasticity. Numerically, the coupled electromechanical model combines a finite difference method approach to integrate the excitation equations, with a Galerkin finite element method to solve the equations governing tissue mechanics. We present example computations demonstrating various effects of contraction on stationary rotating spiral waves and spiral wave break. We show that tissue mechanics significantly contributes to the dynamics of electrical propagation, and that a coupled electromechanical approach should be pursued in future electrophysiological modelling studies.  相似文献   

2.
We describe how Art Winfree's ideas about phase singularities can be used to understand the response of cardiac tissue with a random preexisting pattern of reentrant waves (fibrillation) to a large brief current stimulus. This discussion is organized around spatial dimension, beginning with a discussion of reentry on a periodic ring, followed by reentry in a two-dimensional planar domain (spiral waves), and ending with consideration of three-dimensional reentrant patterns (scroll waves). In all cases, we show how reentrant activity is changed by the application of a shock, describing conditions under which defibrillation is successful or not. Using topological arguments we draw the general conclusion that with a generic placement of stimulating electrodes, large-scale virtual electrodes do not give an adequate explanation for the mechanism of defibrillation.  相似文献   

3.
Desmosomes are critical adhesion structures in cardiomyocytes, with mutation/loss linked to the heritable cardiac disease, arrhythmogenic right ventricular cardiomyopathy (ARVC). Early studies revealed the ability of desmosomal protein loss to trigger ARVC disease features including structural remodeling, arrhythmias, and inflammation; however, the precise mechanisms contributing to diverse disease presentations are not fully understood. Recent mechanistic studies demonstrated the protein degradation component CSN6 is a resident cardiac desmosomal protein which selectively restricts cardiomyocyte desmosomal degradation and disease. This suggests defects in protein degradation can trigger the structural remodeling underlying ARVC. Additionally, a subset of ARVC-related mutations show enhanced vulnerability to calpain-mediated degradation, further supporting the relevance of these mechanisms in disease. Desmosomal gene mutations/loss has been shown to impact arrhythmogenic pathways in the absence of structural disease within ARVC patients and model systems. Studies have shown the involvement of connexins, calcium handling machinery, and sodium channels as early drivers of arrhythmias, suggesting these may be distinct pathways regulating electrical function from the desmosome. Emerging evidence has suggested inflammation may be an early mechanism in disease pathogenesis, as clinical reports have shown an overlap between myocarditis and ARVC. Recent studies focus on the association between desmosomal mutations/loss and inflammatory processes including autoantibodies and signaling pathways as a way to understand the involvement of inflammation in ARVC pathogenesis. A specific focus will be to dissect ongoing fields of investigation to highlight diverse pathogenic pathways associated with desmosomal mutations/loss.  相似文献   

4.
Cardiovascular diseases are the leading cause of mortality worldwide and about 25% of cardiovascular deaths are due to disturbances in cardiac rhythm or “arrhythmias”. Arrhythmias were traditionally treated with antiarrhythmic drugs, but increasing awareness of the risks of presently available antiarrhythmic agents has greatly limited their usefulness. Most common treatment algorithms still involve small molecule drugs, and antiarrhythmic agents with improved efficacy and safety are sorely needed. This paper reviews the model systems that are available for discovery and development of new antiarrhythmic drugs. We begin with a presentation of screening methods used to identify specific channel-interacting agents, with a particular emphasis on high-throughput screens. Traditional manual electrophysiological methods, automated electrophysiology, fluorescent dye methods, flux assays and radioligand binding assays are reviewed. We then discuss a variety of relevant arrhythmia models. Two models are widely used in testing for arrhythmogenic actions related to excess action potential prolongation, an important potential adverse effect of chemical entities affecting cardiac rhythm: the methoxamine-sensitized rabbit and the dog with chronic atrioventricular block. We then go on to review models used to assess potential antiarrhythmic actions. For ventricular arrhythmias, chemical induction methods, cardiac or neural electrical stimulation, ischaemic heart models and models of cardiac channelopathies can be used to identify effective antiarrhythmic agents. For atrial arrhythmias, potentially useful models include vagally-maintained atrial fibrillation, acute asphyxia with atrial burst-pacing, sterile pericarditis, Y-shaped atria surgical incisions, chronic atrial dilation models, atrial electrical remodelling due to sustained atrial tachycardia, heart failure-related atrial remodelling, and acute atrial ischaemia. It is hoped that the new technologies now available and the recently-developed models for arrhythmia-response assessment will permit the introduction of newer and more effective antiarrhythmic therapies in the near future.  相似文献   

5.
6.

Aims

Cardiac arrest (CA) is an indication for defibrillator (ICD) implantation unless it occurs in the context of an acute myocardial infarction (AMI). We investigated the ventricular arrhythmia (VA)-free survival of patients resuscitated from CA in the setting of AMI.

Methods

We reviewed a database of 1600 AMI and CA survivors from which 48 patients were identified as having concurrent CA and AMI (CA+AMI group). Those patients were matched by age, gender, race, and left ventricular ejection fraction (LVEF) to 96 patients with AMI but no CA (AMI group) and 48 patients with CA but no AMI (CA group).

Results

Patients and controls were followed for 3.9±3.2 years. Patients in the 3 groups had similar baseline characteristics (age 63±14 yrs, 78% men, 98% white, 53% with CAD, LVEF 33±14%). The 5-year VA-free survival was 67%, 92%, and 80% for the CA+AMI, AMI, and CA groups, respectively, p<0.001.

Conclusion

Patients with concurrent CA and AMI are at high risk of recurrent VA, with VA-free survival rates significantly worse than those of patients with AMI but no CA, and comparable to those of patients with CA outside the context of an AMI. Accordingly, these patients should be considered for ICD implantation.  相似文献   

7.

Aims

Hypertrophic cardiomyopathy (HCM) is a frequent cause of sudden cardiac death (SCD) due to exercise-related ventricular arrhythmias (ERVA); however the pathological substrate is uncertain. The aim was to determine the prevalence of ERVA and their relation with fibrosis as determined by cardiac magnetic resonance imaging (CMR) in carriers of an HCM causing mutation.

Methods

We studied the prevalence and origin of ERVA and related these with fibrosis on CMR in a population of 31 HCM mutation carriers.

Results

ERVA occurred in seven patients (23%) who all showed evidence of fibrosis (100% ERVA(+) vs. 58% ERVA(-), p = 0.04). No ventricular tachycardia or ventricular fibrillation occurred. In patients with ERVA, the extent of fibrosis was significantly larger (8 ± 4% vs. 3 ± 4%, p = 0.02). ERVA originated from areas with a high extent of fibrosis or regions directly adjacent to these areas.

Conclusions

ERVA in HCM mutation carriers arose from the area of fibrosis detected by CMR; ERVA seems closely related to cardiac fibrosis. Fibrosis as detected by CMR should be evaluated as an additional risk factor to further delineate risk of SCD in carriers of an HCM causing mutation.  相似文献   

8.
We investigated the cellular and molecular mechanisms underlying arrhythmias in heart failure. A genetically engineered mouse lacking the expression of the muscle LIM protein (MLP-/-) was used in this study as a model of heart failure. We used electrocardiography and patch clamp techniques to examine the electrophysiological properties of MLP-/- hearts. We found that MLP-/- myocytes had smaller Na+ currents with altered voltage dependencies of activation and inactivation and slower rates of inactivation than control myocytes. These changes in Na+ currents contributed to longer action potentials and to a higher probability of early afterdepolarizations in MLP-/- than in control myocytes. Western blot analysis suggested that the smaller Na+ current in MLP-/- myocytes resulted from a reduction in Na+ channel protein. Interestingly, the blots also revealed that the alpha-subunit of the Na+ channel from the MLP-/- heart had a lower average molecular weight than in the control heart. Treating control myocytes with the sialidase neuraminidase mimicked the changes in voltage dependence and rate of inactivation of Na+ currents observed in MLP-/- myocytes. Neuraminidase had no effect on MLP-/- cells thus suggesting that Na+ channels in these cells were sialic acid-deficient. We conclude that deficient glycosylation of Na+ channel contributes to Na+ current-dependent arrhythmogenesis in heart failure.  相似文献   

9.
Starling's Law and the well-known end-systolic pressure-volume relationship (ESPVR) of the left ventricle reflect the effect of sarcomere length (SL) on stress (sigma) development and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL-[Ca2+]free relationships (sigma-SL-CaR) at submaximal [Ca2+] in intact and skinned trabeculae were similar, albeit that the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-CaR using a kinetic model where we assumed that the rates of Ca2+ binding by Troponin-C (Tn-C) and/or cross-bridge (XB) cycling are determined by SL, [Ca2+] or stress. We analyzed the correlation between the model results and steady state stress measurements at varied SL and [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that: (i) the dominant feedback mechanism is SL, stress or [Ca2+]-dependent; and (ii) the feedback mechanism regulates: Tn-C-Ca2+ affinity, XB kinetics or, unitary XB-force. The analysis strongly suggests that feedback of the number of strong XBs to cardiac Tn-C-Ca2+ affinity is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch-stress accurately reproduced the sigma-SL-CaR and the time course of twitch-stress as well as the time course of intracellular [Ca2+]i. Modeling of the response of the cardiac twitch to rapid stress changes using the above feedback model uniquely predicted the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. The above concept has important repercussions for the non-uniformly contracting heart in which arrhythmogenic Ca2+ waves arise from weakened areas in cardiac muscle. These Ca2+ waves can reversibly be induced in muscle with non-uniform excitation contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). These observations suggest the unifying hypothesis that force feedback to Ca2+ binding by Tn-C is responsible for Starling's Law and the ESPVR in uniform myocardium and leads in non-uniform myocardium to a surge of Ca2+ released by the myofilaments during relaxation, which initiates arrhythmogenic propagating Ca2+ release by the SR.  相似文献   

10.
混沌理论及其在建立神经网络模型中的应用   总被引:3,自引:0,他引:3  
随着许多学科的相互紧密交叉以及混沌理论的日益深入的研究,人们从生物现象中提出了许多与混沌有关的神经网络模型,本文对混沌理论的基本原理做了简要概述,并着重介绍了四种有代表性的混沌神经网络模型及其应用.同时指出这一研究方向无论在理论还是在应用方面都具有十分诱人的前景.  相似文献   

11.
Evolution of cooperation among genetically unrelated individuals has been of considerable concern in various fields such as biology, economics, and psychology. The evolution of cooperation is often explained by reciprocity. Under reciprocity, cooperation can prevail in a society because a donor of cooperation receives reciprocation from the recipient of the cooperation, called direct reciprocity, or from someone else in the community, called indirect reciprocity. Nowak and Sigmund [1993. Chaos and the evolution of cooperation. Proc. Natl. Acad. Sci. USA 90, 5091-5094] have demonstrated that directly reciprocal cooperation in two-person prisoner's dilemma games with mutation of strategies can be maintained dynamically as periodic or chaotic oscillation. Furthermore, Eriksson and Lindgren [2005. Cooperation driven by mutations in multi-person Prisoner's Dilemma. J. Theor. Biol. 232, 399-409] have reported that directly reciprocal cooperation in n-person prisoner's dilemma games (n>2) can be maintained as periodic oscillation. Is dynamic cooperation observed only in direct reciprocity? Results of this study show that indirectly reciprocal cooperation in n-person prisoner's dilemma games can be maintained dynamically as periodic or chaotic oscillation. This is, to our knowledge, the first demonstration of chaos in indirect reciprocity. Furthermore, the results show that oscillatory dynamics are observed in common in the evolution of reciprocal cooperation whether for direct or indirect.  相似文献   

12.
13.
A two-component model is developed consisting of a discrete loop of cardiac cells that circulates action potentials as well as a pacing mechanism. Physiological properties of cells such as restitutions of refractoriness and of conduction velocity are given via experimentally measured functions. The dynamics of circulating pulses and the pacer's action are regulated by two threshold relations. Patterns of spontaneous initiations and terminations of reentry (SITR) generated by this system are studied through numerical simulations and analytical observations. These patterns can be regular or irregular; causes of irregularities are identified as the threshold bistability (T-bistability) of reentrant circulation and in some cases, also phase-resetting interactions with the pacer.  相似文献   

14.
We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.  相似文献   

15.
SYNOPSIS. Centrifugation for 30–40 seconds at 8,000 g has been used to render monopodial specimens of the large free-living ameba. Chaos carolinensis. These monopodial amebae exhibit obvious torsional movements in the tail. In many cases the posterior ectoplasm assumes the form of a screw with helical ridges forming in place of the more common straight dorsal fins. This finding prompted a re-examination of normal polypodial C. carolinensis, and a majority of these were found also to exhibit torsional movement in the tail and in retracting pseudopodia. These movements suggest that the cytoskeleton of Chaos may have a helical component in its organization.  相似文献   

16.
Although the full physiological significance of vasomotion is still debated, it is generally thought to have a role in optimizing tissue oxygenation parameters. We study the effect of vasomotion rhythm in skeletal muscle on oxygen transport using a computational model. The model is used: (i) to test a novel hypothesis that “vasomotors” form a chemical network in which the rhythm adapts to meet oxygen demand in skeletal muscle and (ii) to study the contribution of desynchronized/chaotic vasomotion in optimizing oxygen delivery to skeletal muscle. We formulate a 2D grid model of skeletal muscle consisting of an interleaved arrangement of vessels and muscle fibers fired by a motor neuronal network. The vasomotors too form a network interacting by chemical means. When positive (negative) synapses dominate, the neuronal network exhibits synchronized (desynchronized) activity. Similarly, when positive (negative) chemical interactions dominate, the vessels exhibit synchronized (desynchronized) activity. Optimal oxygenation is observed when both neuronal network and vasomotor network exhibit desynchronous activity. Muscle oxygenation is thought to result by interactions between the fiber/neuron network and the vessel network; optimal oxygenation depends on precise rhythm-related conditions on the two networks. The model provides interesting insights into the phenomenon of muscle fatigue.  相似文献   

17.
An increasing number of studies use the spectrum of cardiac signals for analyzing the spatiotemporal dynamics of complex cardiac arrhythmias. However, the relationship between the spectrum of cardiac signals and the spatiotemporal dynamics of the underlying cardiac sources remains to date unclear. In this paper, by following a multivariate signal analysis approach we identify the relationship between the spectrum of cardiac signals, the spatiotemporal dynamics of cardiac sources, and the measurement characteristics of the lead systems. Then, by using analytical methods and computer simulations we analyze the spectrum of cardiac signals measured by idealized lead systems during correlated and uncorrelated spatiotemporal dynamics. Our results show that lead systems can have distorting effects on the spectral envelope of cardiac signals, which depend on the spatial resolution of the lead systems and on the degree of spatiotemporal correlation of the underlying cardiac sources. In addition to this, our results indicate that the spectral features that do not depend on the spectral envelope behave robustly against different choices of lead systems.  相似文献   

18.
Swelling-activated chloride channels in cardiac physiology and pathophysiology   总被引:20,自引:0,他引:20  
Characteristics and functions of the cardiac swelling-activated Cl current (ICl,swell) are considered in physiologic and pathophysiologic settings. ICl,swell is broadly distributed throughout the heart and is stimulated not only by osmotic and hydrostatic increases in cell volume, but also by agents that alter membrane tension and direct mechanical stretch. The current is outwardly rectifying, reverses between the plateau and resting potentials (Em), and is time-independent over the physiologic voltage range. Consequently, ICl,swell shortens action potential duration, depolarizes Em, and acts to decrease cell volume. Because it is activated by stimuli that also activate cation stretch-activated channels, ICl,swell should be considered as a potential effector of mechanoelectrical feedback. ICl,swell is activated in ischemic and non-ischemic dilated cardiomyopathies and perhaps during ischemia and reperfusion. ICl,swell plays a role in arrhythmogenesis, myocardial injury, preconditioning, and apoptosis of myocytes. As a result, ICl,swell potentially is a novel therapeutic target.  相似文献   

19.
心肌细胞缝隙连接重塑与心律失常   总被引:1,自引:0,他引:1  
Yu ZB  Sheng JJ 《生理学报》2011,63(6):586-592
缝隙连接是相邻心肌细胞间电、化学偶联的通道,亦是心室肌成为功能性合胞体的重要结构.心肌有缝隙连接蛋白(connexin,CX) 40、43与45的表达,心室肌主要表达CX43.CX43形成的缝隙连接大部分呈点状分布于闰盘部位,心肌细胞膜侧面分布极少.心肌缺血-再灌注、肥厚、衰竭、高胆同醇与糖尿病条件下,心肌细胞缝隙连接...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号