首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.  相似文献   

5.
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the pRB tumor suppressor protein. Cyclin D1 is overexpressed in 20-30% of human breast tumors and is induced both by oncogenes including those for Ras, Neu, and Src, and by the beta-catenin/lymphoid enhancer factor (LEF)/T cell factor (TCF) pathway. The ankyrin repeat containing serine-threonine protein kinase, integrin-linked kinase (ILK), binds to the cytoplasmic domain of beta(1) and beta(3) integrin subunits and promotes anchorage-independent growth. We show here that ILK overexpression elevates cyclin D1 protein levels and directly induces the cyclin D1 gene in mammary epithelial cells. ILK activation of the cyclin D1 promoter was abolished by point mutation of a cAMP-responsive element-binding protein (CREB)/ATF-2 binding site at nucleotide -54 in the cyclin D1 promoter, and by overexpression of either glycogen synthase kinase-3beta (GSK-3beta) or dominant negative mutants of CREB or ATF-2. Inhibition of the PI 3-kinase and AKT/protein kinase B, but not of the p38, ERK, or JNK signaling pathways, reduced ILK induction of cyclin D1 expression. ILK induced CREB transactivation and CREB binding to the cyclin D1 promoter CRE. Wnt-1 overexpression in mammary epithelial cells induced cyclin D1 mRNA and targeted overexpression of Wnt-1 in the mammary gland of transgenic mice increased both ILK activity and cyclin D1 levels. We conclude that the cyclin D1 gene is regulated by the Wnt-1 and ILK signaling pathways and that ILK induction of cyclin D1 involves the CREB signaling pathway in mammary epithelial cells.  相似文献   

6.
7.
8.
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA.  相似文献   

9.
10.
11.
12.
Lysyl oxidase is the enzyme that is essential for collagen and elastin cross-linking. Previous investigations showed that lysyl oxidase is down-regulated in many human tumors and ras-transformed cells. Recently, we proved that antisense down-regulation of lysyl oxidase in NRK-49F cells induced phenotypic changes and oncogenic transformation, characterized by p21(ras) activation and beta-catenin/cyclin D1 up-regulation. In the present paper, we examined beta-catenin intracellular distribution and its association with E-cadherin. We observed an increased association between E-cadherin and beta-catenin in the lysyl-oxidase down-regulated cells during serum starvation. Moreover, we found that beta-catenin cytoplasmic and nuclear levels were increased, suggesting a failure of its down-regulation by the APC-GSK-3beta system, in particular the GSK-3beta phosphorylation of ser-33/37 and thr-41 of beta-catenin. Finally, we investigated the mechanisms leading to the observed cyclin D1 up-regulation. We showed that in the antisense lysyl oxidase cells the cyclin D1 promoter was activated through the LEF and the ATF/CRE sites in the proximal promoter. While the promoter activation through LEF is compatible with beta-catenin signaling, we investigated the possibility that the CRE-dependent activation might be linked to the down-regulation of lysyl oxidase. In fact, up-regulation of lysyl oxidase in a COS-7 cell model showed a significant diminution of the CREB protein binding to the cyclin D1 promoter, leading to a dramatic inhibition of its activity and a significant down-regulation of cyclin D1 protein level in vivo. Finally, our study describes some major anomalies occurring in lysyl oxidase down-regulated fibroblasts, related to beta-catenin signaling and cyclin D1 expression.  相似文献   

13.
Cyclin D1 gene induction is a key event in G1 phase progression. Our previous studies indicated that signaling to cyclin D1 is cell type-dependent because the timing of cyclin D1 gene expression in MCF10A mammary epithelial cells and mesenchymal cells such as fibroblasts and vascular smooth muscle cells is very different, with epithelial cells first expressing cyclin D1 in early rather than mid-G1 phase. In this report, we induced a mesenchymal phenotype in MCF10A cells by long-term exposure to TGF-beta and used the control and transitioned cells to examine cell type specificity of the signaling pathways that regulate cyclin D1 gene expression. We show that early-G1 phase cyclin D1 gene expression in MCF10A cells is under the control of Rac, whereas mid-G1 phase cyclin D1 induction requires parallel signaling from Rac and ERK, both in the control and transitioned cells. This combined requirement for Rac and ERK signaling is associated with an increased requirement for intracellular tension, Rb phosphorylation, and S phase entry. A similar co-regulation of cyclin D1 mRNA by Rac and ERK is seen in primary mesenchymal cells. Overall, our results reveal two mechanistically distinct phases of Rac-dependent cyclin D1 expression and emphasize that the acquisition of Rac/ERK co-dependence is required for the mid-G1 phase induction of cyclin D1 associated with S phase entry.  相似文献   

14.
15.
16.
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.  相似文献   

17.
Asbestos is a ubiquitous, naturally occurring fiber that has been linked to the development of malignant and fibrotic lung diseases. Asbestos exposure leads to apoptosis, followed by compensatory proliferation, yet many of the signaling cascades coupled to these outcomes are unclear. Because CREs (Ca(2+)/cAMP-response elements) are found in the promoters of many genes important for regulation of proliferation and apoptosis, CREB (CRE binding protein) is likely to play an important role in the development of asbestos-mediated lung injury. To explore this possibility, we tested the hypotheses that asbestos exposure leads to CREB phosphorylation in lung epithelial cells and that protein kinase A (PKA) and extracellular signal-regulated kinases 1/2 (ERK1/2) are central regulators of the CREB pathway. Persistent CREB phosphorylation was observed in lung sections from mice following inhalation of crocidolite asbestos. Exposure of C10 lung epithelial cells to crocidolite asbestos led to rapid CREB phosphorylation and apoptosis that was decreased by the inhibition of PKA or ERK1/2 using the specific inhibitors H89 and U0126, respectively. Furthermore, crocidolite asbestos selectively induced a sustained increase in MAP kinase phosphatase-1 mRNA and protein. Silencing CREB protein dramatically reduced asbestos-mediated ERK1/2 phosphorylation, yet significantly increased the number of cells undergoing asbestos-induced apoptosis. These data reveal a novel and selective role for CREB in asbestos-mediated signaling through pathways regulated by PKA and ERK1/2, further providing evidence that CREB is an important regulator of apoptosis in asbestos-induced responses of lung epithelial cells.  相似文献   

18.
19.
We reported previously an important role of cyclic AMP-response element (CRE) for the induction of interleukin-6 gene expression by angiotensin II (AngII). We examined signaling pathways that are responsible for AngII-induced phosphorylation of CRE-binding protein (CREB) at serine 133 that is a critical marker for the activation in rat vascular smooth muscle cells (VSMC). AngII time dependently induced phosphorylation of CREB with a peak at 5 min. The AngII-induced phosphorylation of CREB was blocked by CV11974, an AngII type I receptor antagonist, suggesting that AngII type I receptor may mediate the phosphorylation of CREB. Inhibition of extracellular signal-regulated protein kinase (ERK) by PD98059 or inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 partially inhibited AngII-induced CREB phosphorylation. A protein kinase A inhibitor, H89, also partially suppressed AngII-induced CREB phosphorylation. Inhibition of epidermal growth factor-receptor by AG1478 suppressed the AngII-induced CREB phosphorylation as well as activation of ERK and p38MAPK. Overexpression of the dominant negative form of CREB by an adenovirus vector suppressed AngII-induced c-fos expression and incorporation of [(3)H]leucine to VSMC. These findings suggest that AngII may activate multiple signaling pathways involving two MAPK pathways and protein kinase A, all of which contribute to the activation of CREB. Transactivation of epidermal growth factor-receptor is also critical for AngII-induced CREB phosphorylation. Activation of CREB may be important for the regulation of gene expression and hypertrophy of VSMC induced by AngII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号