首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
All of the previously described effects of integration host factor (IHF) on bacteriophage Mu development have supported the view that IHF favours transposition-replication over the alternative state of lysogenic phage growth. In this report we show that, consistent with a model in which Mu repressor binding to its operators requires a particular topology of the operator DNA, IHF stimulates repressor binding to the O1 and O2 operators and enhances Mu repression. IHF would thus be one of the keys, besides supercoiling and the H-NS protein, that lock the operator region into the appropriate topological conformation for high-affinity binding not only of the phage transposase but also of the phage repressor.  相似文献   

3.
4.
5.
Using gel retardation and DNase I protection techniques, we have demonstrated that the Escherichia coli integration host factor (IHF) stabilizes the interaction between Mu repressor and its cognate operator-binding sites in vitro. These results are discussed in terms of a model in which IHF may commit the phage to the lytic or lysogenic pathway depending on the occupancy of the operator sites by the repressor.  相似文献   

6.
7.
8.
9.
Localization and regulation of bacteriophage Mu promoters.   总被引:10,自引:9,他引:1       下载免费PDF全文
Mu promoters active during the lytic cycle were located by isolating RNA at various times after induction of Mu prophages, radiolabeling it by capping in vitro, and hybridizing it to Mu DNA fragments on Southern blots. Signals were detected from four new promoters in addition to the previously characterized Pe (early), PcM (repressor), and Pmom (late) promoters. A major signal upstream of C was first observed at 12 min and intensified thereafter with RNA from cts and C amber but not replication-defective prophages; these characteristics indicate that this signal arises from a middle promoter, which we designate Pm. With 20- and 40-min RNA, four additional major signals originated in the C-lys, F-G-I, N-P, and com-mom regions. These signals were missing with RNA from C amber and replication-defective prophages and therefore reflected the activity of late promoters, one of which we presume was Pmom. Uninduced lysogens showed weak signals from five regions, one from the early regulatory region, three between genes B and lys, and one near the late genes K, L, and M. The first of these probably resulted from PcM activity; the others remain to be identified.  相似文献   

10.
11.
12.
13.
14.
15.
16.
We have examined the interactions of lac repressor and RNA polymerase with the DNA of the lac control region, using a method for direct visualization of the regions of DNA protected by proteins from DNAase attack. The repressor protects the operator essentially as reported by Gilbert and Maxam (1) with some small modifications. However, the evidence reported here concerning the binding of RNA polymerase to the DNA of the promoter mutant UV5 indicates that : 1) the RNA polymerase molecule binds asymmetrically to the promoter DNA, 2) RNA polymerase protects DNA sequences to within a few bases of the CAP binding site, suggesting direct interaction between polymerase and the CAP protein at this site, 3) RNA polymerase still binds to the promoter when repressor is bound to the operator, but fails to form the same extensive complex.  相似文献   

17.
Phage Mu's c gene product is a cooperative regulatory protein that binds to a large, complex, tripartite 184-bp operator. To probe the mechanism of repressor action, we isolated and characterized 13 phage mutants that cause Mu to undergo lytic development when cells are shifted from 30 to 42 degrees C. This collection contained only four mutations in the repressor gene, and all were clustered near the N terminus. The cts62 substitution of R47----Q caused weakened specific DNA recognition and altered cooperativity in vitro. A functional repressor with only 63 amino acids of Mu repressor fused to a C-terminal fragment of beta-galactosidase was constructed. This chimeric protein was an efficient repressor, as it bound specifically to Mu operator DNA in vitro and its expression conferred Mu immunity in vivo. A DNA looping model is proposed to explain regulation of the tripartite operator site and the highly cooperative nature of repressor binding.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号