首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A way to identify loci subject to positive selection is to detect the signature of selective sweeps in given chromosomal regions. It is revealed by the departure of DNA polymorphism patterns from the neutral equilibrium predicted by coalescent theory. We surveyed DNA sequence variation in a region formerly identified as causing "sex-ratio" meiotic drive in Drosophila simulans. We found evidence that this system evolved by positive selection at 2 neighboring loci, which thus appear to be required simultaneously for meiotic drive to occur. The 2 regions are approximately 150-kb distant, corresponding to a genetic distance of 0.1 cM. The presumably large transmission advantage of chromosomes carrying meiotic drive alleles at both loci has not erased the individual signature of selection at each locus. This chromosome fragment combines a high level of linkage disequilibrium between the 2 critical regions with a high recombination rate. As a result, 2 characteristic traits of selective sweeps--the reduction of variation and the departure from selective neutrality in haplotype tests--show a bimodal pattern. Linkage disequilibrium level indicates that, in the natural population from Madagascar used in this study, the selective sweep may be as recent as 100 years.  相似文献   

2.
Testing models of selection and demography in Drosophila simulans   总被引:8,自引:0,他引:8  
Wall JD  Andolfatto P  Przeworski M 《Genetics》2002,162(1):203-216
We analyze patterns of nucleotide variability at 15 X-linked loci and 14 autosomal loci from a North American population of Drosophila simulans. We show that there is significantly more linkage disequilibrium on the X chromosome than on chromosome arm 3R and much more linkage disequilibrium on both chromosomes than expected from estimates of recombination rates, mutation rates, and levels of diversity. To explore what types of evolutionary models might explain this observation, we examine a model of recurrent, nonoverlapping selective sweeps and a model of a recent drastic bottleneck (e.g., founder event) in the demographic history of North American populations of D. simulans. The simple sweep model is not consistent with the observed patterns of linkage disequilibrium nor with the observed frequencies of segregating mutations. Under a restricted range of parameter values, a simple bottleneck model is consistent with multiple facets of the data. While our results do not exclude some influence of selection on X vs. autosome variability levels, they suggest that demography alone may account for patterns of linkage disequilibrium and the frequency spectrum of segregating mutations in this population of D. simulans.  相似文献   

3.
Meiklejohn CD  Kim Y  Hartl DL  Parsch J 《Genetics》2004,168(1):265-279
The recent action of positive selection is expected to influence patterns of intraspecific DNA sequence variation in chromosomal regions linked to the selected locus. These effects include decreased polymorphism, increased linkage disequilibrium, and an increased frequency of derived variants. These effects are all expected to dissipate with distance from the selected locus due to recombination. Therefore, in regions of high recombination, it should be possible to localize a target of selection to a relatively small interval. Previously described patterns of intraspecific variation in three tandemly arranged, testes-expressed genes (janusA, janusB, and ocnus) in Drosophila simulans included all three of these features. Here we expand the original sample and also survey nucleotide polymorphism at three neighboring loci. On the basis of recombination events between derived and ancestral alleles, we localize the target of selection to a 1.5-kb region surrounding janusB. A composite-likelihood-ratio test based on the spatial distribution and frequency of derived polymorphic variants corroborates this result and provides an estimate of the strength of selection. However, the data are difficult to reconcile with the simplest model of positive selection, whereas a new composite-likelihood method suggests that the data are better described by a model in which the selected allele has not yet gone to fixation.  相似文献   

4.
Martin G  Otto SP  Lenormand T 《Genetics》2006,172(1):593-609
In finite populations, linkage disequilibria generated by the interaction of drift and directional selection (Hill-Robertson effect) can select for sex and recombination, even in the absence of epistasis. Previous models of this process predict very little advantage to recombination in large panmictic populations. In this article we demonstrate that substantial levels of linkage disequilibria can accumulate by drift in the presence of selection in populations of any size, provided that the population is subdivided. We quantify (i) the linkage disequilibrium produced by the interaction of drift and selection during the selective sweep of beneficial alleles at two loci in a subdivided population and (ii) the selection for recombination generated by these disequilibria. We show that, in a population subdivided into n demes of large size N, both the disequilibrium and the selection for recombination are equivalent to that expected in a single population of a size intermediate between the size of each deme (N) and the total size (nN), depending on the rate of migration among demes, m. We also show by simulations that, with small demes, the selection for recombination is stronger than both that expected in an unstructured population (m = 1 - 1/n) and that expected in a set of isolated demes (m = 0). Indeed, migration maintains polymorphisms that would otherwise be lost rapidly from small demes, while population structure maintains enough local stochasticity to generate linkage disequilibria. These effects are also strong enough to overcome the twofold cost of sex under strong selection when sex is initially rare. Overall, our results show that the stochastic theories of the evolution of sex apply to a much broader range of conditions than previously expected.  相似文献   

5.
We study the probability of ultimate fixation of a single new mutant arising in an individual chosen at random at a locus linked to two other loci carrying previously arisen mutations. This is done using the Ancestral Recombination-Selection Graph (ARSG) in a finite population in the limit of a large population size, which is also known as the Ancestral Influence Graph (AIG). An analytical expansion of the fixation probability with respect to population-scaled recombination rates and selection intensities is obtained. The coefficients of the expansion are expressed in terms of the initial state of the population and the epistatic interactions among the selected loci. Under the assumption of weak selection at tightly linked loci, the sign of the leading term, which depends on the signs of epistasis and initial linkage disequilibrium, determines whether an increase in recombination rates increases the chance of ultimate fixation of the new mutant. If mutants are advantageous, this is the case when epistasis is positive or null and the initial linkage disequilibrium is negative, which is an expected state in a finite population under directional selection. Moreover, this is also the case for a neutral mutant modifier coding for higher recombination rates if the same conditions hold at the selected loci. Under the same conditions, deleterious mutants are disfavored for ultimate fixation and neutral modifiers for higher recombination rates still favored. The recombination rates between the modifier locus and the selected loci do not come into play in the leading terms of the approximation for the fixation probability, but they do in higher-order terms.  相似文献   

6.
Schlenke TA  Begun DJ 《Genetics》2005,169(4):2013-2022
Immune system genes in a California population sample of Drosophila simulans were shown to bear several hallmarks of the effects of past directional selection. One potential effect of directional selection is an increase in linkage disequilibrium among the polymorphic sites that are linked to the site under selection. In this study, we focus on three D. simulans immunity loci, Hmu, Sr-CI/Sr-CIII, and Tehao, for which the polymorphic sites are in nearly perfect linkage disequilibrium, an unusual finding even with respect to other immunity genes sampled from the same lines. The most likely explanation for this finding is that, at each locus, two divergent alleles have been selected to intermediate frequencies in the recent past. The extent to which the linkage disequilibrium extends to the flanks of each of the immunity genes is minimal, suggesting that the favored mutations actually occurred within the immunity genes themselves. Furthermore, the excess linkage disequilibrium found in the California population is not found in an African D. simulans population sample and may be a result of novel pathogen-mediated selection pressures encountered during establishment of non-African populations.  相似文献   

7.
The Effects of Overdominance on Linkage in a Multilocus System   总被引:3,自引:2,他引:1       下载免费PDF全文
Computer simulations were performed with overdominant multiple alleles among tightly linked multiple loci under a multiplicative fitness model. The quantity X2/N(n — 1) was introduced as a new measure of linkage disequilibrium which, unlike previously available measures, can be applied to multiple allele models, where N is the sample size, and n is the number of alleles at the locus possessing fewest alleles. Simulations showed that (1) With multiple (three or four) alleles, the approach to stable disequilibrium is slower and the amount of disequilibrium established is weaker than in a two allele system. (2) The number of complementary chromosomes is a function of number of alleles and of population size. (3) As population size increases, the rate of the approach to stable disequilibrium is slower. (4) There is an optimum selection coefficient which minimizes the transient fixation probability of alleles when linkage is present. (5) The absence of linkage disequilibrium is in most cases not a practical method of testing the hypothesis of balancing selection of genetic polymorphisms because it depends strongly on population size in determining linkage disequilibria.  相似文献   

8.
A scan of the X chromosome of a European Drosophila melanogaster population revealed evidence for the recent action of positive directional selection at individual loci. In this study we analyze one such region that showed no polymorphism in the genome scan (located in cytological division 2C10-2E1). We detect a 60.5-kb stretch of DNA encompassing the genes ph-d, ph-p, CG3835, bcn92, Pgd, wapl, and Cyp4d1, which almost completely lacks variation in the European sample. Loci flanking this region show a skewed frequency spectrum at segregating sites, strong haplotype structure, and high levels of linkage disequilibrium. Neutrality tests reveal that these data are unlikely under both the neutral equilibrium model and the simple bottleneck scenarios. In contrast, newly developed maximum-likelihood ratio tests suggest that strong selection has acted recently on the region under investigation, causing a selective sweep. Evidence that this sweep may have originated in an ancestral population in Africa is presented.  相似文献   

9.
An analysis is undertaken for a finite random mating population of the linkage disequilibrium between two loci, at both of which all alleles are neutral, all mutant alleles differ from existing ones and several may be segregating at any time. Formulae are derived for the expected total squared disequilibrium, measured as the sum of squares of disequilibria between all pairs of alleles. The ratio of this quantity to the expected value of the product of the heterozygosities at the two loci is similar to that obtained previously by Ohta and Kimura for two nucleotide sites at each of which not more than two mutant types can segregate at any time.  相似文献   

10.
Antagonistically selected alleles‐–those with opposing fitness effects between sexes, environments, or fitness components‐–represent an important component of additive genetic variance in fitness‐related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate‐frequency alleles disproportionately contribute to genetic variance of life‐history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus nonantagonistic (e.g., overdominant and frequency‐dependent selection) processes. We show that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, nonantagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection.  相似文献   

11.
Allelic disequilibrium between closely linked genes is a common observation in human populations and often gives rise to speculation concerning the role of selective forces. In a previous treatment, we have developed a population model of the expected distribution of rare variants (including private polymorphisms) in Amerindians and have argued that, because of the great expansion of Amerindian numbers with the advent of agriculture, most of these rare variants are of relatively recent origin. Many other populations have similar histories of striking recent expansions. In this treatment, we demonstrate that, in consequence of this fact, a high degree of linkage disequilibrium between two nonhomologous alleles <0.5 cM apart is the "normal" expectation, even in the absence of selection. This expectation is enhanced by the previous subdivision of human populations into relatively isolated tribes characterized by a high level of endogamy and inbreeding. We also demonstrate that the alleles associated with a recessive disease phenotype are expected to exist in a population in very variable frequencies: there is no need to postulate positive selection with respect to the more common disease-associated alleles for such entities as phenylketonuria or cystic fibrosis.  相似文献   

12.
The quantitative genetic variance-covariance that can be maintained in a random environment is studied, assuming overlapping generations and Gaussian stabilizing selection with a fluctuating optimum. The phenotype of an individual is assumed to be determined by additive contributions from each locus on paternal and maternal gametes (i.e., no epistasis and no dominance). Recurrent mutation is ignored, but linkage between loci is arbitrary. The genotype distribution in the evolutionarily stable population is generically discrete: only a finite number of polymorphic alleles with distinctly different effects are maintained, even though we allow a continuum of alleles with arbitrary phenotypic contributions to invade. Fluctuating selection maintains nonzero genetic variance in the evolutionarily stable population if the environmental heterogeneity is larger than a certain threshold. Explicit asymptotic expressions for the standing variance-covariance components are derived for the population near the threshold, or for large generational overlap, as a function of environmental variability and genetic parameters (i.e., number of loci, recombination rate, etc.), using the fact that the genotype distribution is discrete. Above the threshold, the population maintains considerable genetic variance in the form of positive linkage disequilibrium and positive gamete covariance (Hardy-Weinberg disequilibrium) as well as allelic variance. The relative proportion of these disequilibrium variances in the total genetic variance increases with the environmental variability.  相似文献   

13.
When a selective sweep occurs in the chromosomal region around a target gene in two populations that have recently separated, it produces three dramatic genomic consequences: 1) decreased multi-locus heterozygosity in the region; 2) elevated or diminished genetic divergence (F(ST)) of multiple polymorphic variants adjacent to the selected locus between the divergent populations, due to the alternative fixation of alleles; and 3) a consequent regional increase in the variance of F(ST) (S(2)F(ST)) for the same clustered variants, due to the increased alternative fixation of alleles in the loci surrounding the selection target. In the first part of our study, to search for potential targets of directional selection, we developed and validated a resampling-based computational approach; we then scanned an array of 31 different-sized moving windows of SNP variants (5-65 SNPs) across the human genome in a set of European and African American population samples with 183,997 SNP loci after correcting for the recombination rate variation. The analysis revealed 180 regions of recent selection with very strong evidence in either population or both. In the second part of our study, we compared the newly discovered putative regions to those sites previously postulated in the literature, using methods based on inspecting patterns of linkage disequilibrium, population divergence and other methodologies. The newly found regions were cross-validated with those found in nine other studies that have searched for selection signals. Our study was replicated especially well in those regions confirmed by three or more studies. These validated regions were independently verified, using a combination of different methods and different databases in other studies, and should include fewer false positives. The main strength of our analysis method compared to others is that it does not require dense genotyping and therefore can be used with data from population-based genome SNP scans from smaller studies of humans or other species.  相似文献   

14.
Since Drosophila melanogaster colonized Europe from tropical Africa 10 to 15 thousand years ago, it is expected that adaptation has played a major role in this species in recent times. A previously conducted multilocus scan of noncoding DNA sequences on the X chromosome in an ancestral and a derived population of D. melanogaster revealed that some loci have been affected by directional selection in the European population. We investigated if the pattern of DNA sequence polymorphism in a region surrounding one of these loci can be explained by a hitchhiking event. We found strong evidence that the studied region around the gene unc-119 was shaped by a recent selective sweep, including a valley of reduced heterozygosity of 83.4 kb, a skew in the frequency spectrum, and significant linkage disequilibrium on one side of the valley. This region, however, was interrupted by gene conversion events leading to a strong haplotype structure in the center of the valley of reduced variation.  相似文献   

15.
The impact of intergenic recombination on the population genetics of plant mitochondrial genomes is unknown. In an effort to study this in the gynodioecious plant Silene vulgaris three-locus PCR/RFLP genotypes (based on the mitochondrial genes atpA, cox1, and cob) were determined for 239 individuals collected from 20 North American populations. Seventeen three-locus PCR/RFLP genotypes were found. Recombination was indicated by observation of each of the four two-locus genotypes possible when the two most common alleles are considered for each of two loci. Based on these common alleles the absolute values of standardized linkage disequilibrium |D'| between pairs of loci range from 0.17 to 0.78. This indicates modest disequilibrium, rather than the maximum value expected in the absence of recombination |D'=1|, or the linkage equilibrium expected if recombination is pervasive (D'=0). Values of D' did not depend on which pair of loci contributed alleles to the analysis. The direction of D' obtained for the common atpA and cox1 alleles was comparable in sign and magnitude to that obtained by examining similar information obtained in a prior study of European samples. All three loci indicated a high degree of population structure (average FST=0.63), which would limit the within-population genetic diversity required for intergenic recombination to create novel genotypes, if most mating is local. Thus, population structure acts as a constraint on the approach to linkage equilibrium.  相似文献   

16.
There is considerable evidence for an adaptive role of inversions, but how their genetic content evolves and affects the subsequent evolution of chromosomal polymorphism remains controversial. Here, we track how life‐history traits, chromosomal arrangements and 22 microsatellites, within and outside inversions, change in three replicated populations of Drosophila subobscura for 30 generations of laboratory evolution since founding from the wild. The dynamics of fitness‐related traits indicated adaptation to the new environment concomitant with directional evolution of chromosomal polymorphism. Evidence of selective changes in frequency of inversions was obtained for seven of 23 chromosomal arrangements, corroborating a role for inversions in adaptation. The evolution of linkage disequilibrium between some microsatellites and chromosomes suggested that adaptive changes in arrangements involved changes in their genetic content. Several microsatellite alleles increased in frequency more than expected by drift in targeted inversions in all replicate populations. In particular, there were signs of selection in the O3+4 arrangement favouring a combination of alleles in two loci linked to the inversion and changing along with it, although the lack of linkage disequilibrium between these loci precludes epistatic selection. Seven other alleles increased in frequency within inversions more than expected by drift, but were not in linkage disequilibrium with them. Possibly these alleles were hitchhiking along with alleles under selection that were not specific to those inversions. Overall, the selection detected on the genetic content of inversions, despite limited coverage of the genome, suggests that genetic changes within inversions play an important role in adaptation.  相似文献   

17.
Curtis Strobeck 《Genetics》1983,103(3):545-555
The expected value of the squared linkage disequilibrium is derived for a neutral locus associated with a chromosomal arrangement that is maintained in the population by strong balancing selection. For a given value of recombination, the expected squared linkage disequilibrium is shown to decrease as the intensity of selection maintaining the arrangement increases. The transient behavior of the expected square linkage disequilibrium is also derived. This theory applies to loci that are closely linked to inversions in Drosophila species and to loci closely linked to the differential segments of the translocation complexes in ring-forming species of Oenothera. In both cases the strong linkage disequilibria that have been observed in natural populations can be explained by random drift.  相似文献   

18.
Strong selection within a given population locally reduces genetic variability not only in the selected gene itself but also in neighbouring loci. This so-called hitch-hiking effect is related to the initial linkage disequilibrium between markers and the selected gene, and depends mainly on the number of copies of the beneficial allele at the start of the selection phase. Contrary to the classical case, in which selection acts on a single, newly arisen beneficial mutation, we considered selection from standing variation (soft selective sweeps) on a gene ( Rht-B1 ) with a major effect on plant height, a selected trait in an experimental wheat population grown for 17 generations, and we documented the evolution of gene diversity and linkage disequilibrium near this gene. As expected, Rht-B1 was found to be under strong selection ( s  = 0.15) and its variation in frequency accounted for 15% of the total trait evolution. This led to a smaller genetic effective population size at Rht-B1 ( Neg  = 18) compared to the whole genome estimation ( Neg  = 167). When compared with expectations under genetic drift only, no significant decrease in gene diversity was found at the closest loci. We computed expected di-locus frequencies for any linked marker– Rht-B1 pair due to hitch-hiking effects. We found that hitch-hiking was expected to affect the two most closely linked loci, but expected reduction in gene diversity was not greater than that due to genetic drift, which was consistent with the observations. Such limited effect was attributed to the low level of linkage disequilibrium (0.16) estimated after parental intercrosses, together with a relatively high initial frequency of the gene. This situation is favourable to candidate gene approaches where small linkage disequilibrium around selected genes is expected.  相似文献   

19.
The characterization and analysis of genetic variation at the HLA loci provides important insight for population geneticists trying to understand the evolutionary forces that have shaped human populations. This study describes the HLA-A and HLA-B loci serotyping and statistical analysis on an isolated Native American population, the Havasupai of Arizona. Four alleles at the HLA-A locus were identified, while eight alleles were found at the HLA-B locus. These variants were present as 20 of 32 potential two-locus haplotypes, with five of the six most common haplotypes exhibiting high positive linkage disequilibrium. Significant homozygote deficiency (heterozygosity excess) was detected both at HLA-A and at HLA-B. This deviation from Hardy-Weinberg proportions was not attributable to nonselective causes such as different allele frequencies in males and females or avoidance of consanguineous matings. In addition, the distribution of alleles at both HLA-A and HLA-B was more even than expected from neutrality theory; that is, the observed Hardy-Weinberg homozygosity was only 62.4% of that expected under neutrality. These observations suggest that balancing selection is of major importance in maintaining genetic variation at HLA-A and HLA-B.  相似文献   

20.
Mating among the immediate products of meiosis (intratetrad mating) is a common feature of many organisms with parthenogenesis or with mating-type determination in the haploid phase. Using a three-locus deterministic model we show that intratetrad mating, unlike other systems of mating, allows sheltering of deleterious recessive alleles even if there is only partial linkage between a mating locus and a load locus. Moreover, modifiers that reduce recombination between the load and mating-type locus will spread to fixation, even when there is no linkage disequilibrium between these loci in the population as a whole. This seeming contradiction to classical expectation is because partial linkage generates linkage disequilibrium among segregating loci within a tetrad, which then acts as the "mating unit."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号