共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Muñoz-Garay C De la Vega-Beltrán JL Delgado R Labarca P Felix R Darszon A 《Developmental biology》2001,234(1):261-274
To fertilize, mammalian sperm must complete a maturational process called capacitation. It is thought that the membrane potential of sperm hyperpolarizes during capacitation, possibly due to the opening of K(+) channels, but electrophysiological evidence is lacking. In this report, using patch-clamp recordings obtained from isolated mouse spermatogenic cells we document the presence of a novel K(+)-selective inwardly rectifying current. Macroscopic current activated at membrane potentials below the equilibrium potential for K(+) and its magnitude was dependent on the external K(+) concentration. The channels selected K(+) over other monovalent cations. Current was virtually absent when external K(+) was replaced with Na(+) or N-methyl-D-glucamine. Addition of Cs(+) or Ba(2+) (IC(50) of approximately 15 microM) to the external solution effectively blocked K(+) current. Dialyzing the cells with a Mg(2+)-free solution did not affect channel activity. Cytosolic acidification reversibly inhibited the current. We verified that the resting membrane potential of mouse sperm changed from -52 +/- 6 to -66 +/- 9 mV during capacitation in vitro. Notably, application of 0.3-1 mM Ba(2+) during capacitation prevented this hyperpolarization and decreased the subsequent exocytotic response to zona pellucida. A mechanism is proposed whereby opening of inwardly rectifying K(+) channels may produce hyperpolarization under physiological conditions and contribute to the cellular changes that give rise to the capacitated state in mature sperm. 相似文献
3.
Intracellular Ca(2+) has an important regulatory role in the control of sperm motility, capacitation, and the acrosome reaction (AR). However, little is known about the molecular identity of the membrane systems that regulate Ca(2+) in sperm. In this report, we provide evidence for the expression of seven Drosophila transient receptor potential homolog genes (trp1-7) and three of their protein products (Trp1, Trp3 and Trp6) in mouse sperm. Allegedly some trps encode capacitative Ca(2+) channels. Immunoconfocal images showed that while Trp6 was present in the postacrosomal region and could be involved in sperm AR, expression of Trp1 and Trp3 was confined to the flagellum, suggesting that they may serve sperm to regulate important Ca(2+)-dependent events in addition to the AR. Likewise, one of these proteins (Trp1) co-immunolocalized with caveolin-1, a major component of caveolae, a subset of lipid rafts potentially important for signaling events and Ca(2+) flux. Furthermore, by using fluorescein-coupled cholera toxin B subunit, which specifically binds to the raft component ganglioside GM1, we identified caveolin- and Trp-independent lipid rafts residing in the plasma membrane of mature sperm. Notably, the distribution of GM1 changes drastically upon completion of the AR. 相似文献
4.
Scorpion toxins that block T-type Ca2+ channels in spermatogenic cells inhibit the sperm acrosome reaction 总被引:3,自引:0,他引:3
López-González I Olamendi-Portugal T De la Vega-Beltrán JL Van der Walt J Dyason K Possani LD Felix R Darszon A 《Biochemical and biophysical research communications》2003,300(2):408-414
The acrosome reaction (AR) is a Ca(2+)-dependent event required for sperm to fertilize the egg. The activation of T-type voltage-gated Ca(2+) channels plays a key role in the induction of this process. This report describes the actions of two toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively) on sperm Ca(2+) channels. Both toxins decrease T-type Ca(2+) channel activity in mouse spermatogenic cells and inhibit the AR in mature sperm. Saturating concentrations of the toxins inhibited at most approximately 70% of the whole-cell Ca(2+) current, suggesting the presence of a toxin-resistant component. In addition, both toxins inhibited approximately 60% of the AR, which is consistent with the participation of T-type Ca(2+) channels in the sperm AR. 相似文献
5.
M. V. Tarasov P. D. Kotova O. A. Rogachevskaja V. Yu. Sysoeva S. S. Kolesnikov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2014,8(3):225-231
The maintenance of pluripotency of mesenchymal stromal cells (MSCs), their proliferation and initiation of differentiation may critically depend on functional expression of ion channels. Despite such a possibility, mechanisms of electrogenesis in MSCs remain poorly understood. In particular, little is known about a variety of ion channels active in resting MSCs or activated upon MSC stimulation. Here we aimed at uncovering ion channels operating in MSCs, including those being active at rest, using the patch clamp technique and inhibitory analysis. In trying to evaluate a contribution of anion channels in MSC resting potential, we employed a number of diverse inhibitors of anion channels and transporters, including niflumic acid (NFA). Basically, NFA caused hyperpolarization of MSCs that was accompanied by a marked increase in ion conductance of their plasma membranes. The blockage of Cl? channels could not underlie such a NFA effect, given that cells dialyzed with a CsCl solution were weakly or negligibly sensitive to this blocker. This and other findings indicated that NFA affected the MSC ion permeability not by targeting Cl? channels but by stimulating K+ channels. NFA-activated K+ current was TEA and diltiazem blockable, and K+ channels involved were potentiated from outside by solution acidification and Cu2+ ions. Taken together, the data obtained implicated two-pore domain K+ channels of the TREK-2 subtype in mediating stimulatory effects of NFA on MSCs. The notable inference from our work is that TREK-2 channels should be expressed and functional virtually in every MSC, given that all cells examined by us (n > 100) similarly responded to NFA by increasing their TREK-2-like K+ conductance. 相似文献
6.
Treviño CL De la Vega-Beltrán JL Nishigaki T Felix R Darszon A 《Journal of cellular physiology》2006,206(2):449-456
Maitotoxin (MTX), a potent marine toxin, activates Ca2+ entry via nonselective cation channels in a wide variety of cells. The identity of the channels involved in MTX action remains unknown. In mammalian sperm, Ca2+ entry through store-operated channels regulates a number of physiological events including the acrosome reaction (AR). Here we report that MTX produced an increase in the intracellular concentration of Ca2+ ([Ca2+]i) in spermatogenic cells that depended on extracellular Ca2+. Ni2+ and SKF96365 diminished the MTX-activated Ca2+ uptake, at concentrations they inhibit store-operated channels, and in a similar manner as they inhibit the Ca2+ influx activated following depletion of intracellular stores by thapsigargin (Tpg). In addition, MTX significantly increased [Ca2+]i in single mature sperm and effectively induced the AR with a half-maximal concentration (ED50) of approximately 1.1 nM. Notably, SKF96365 similarly inhibited the MTX-induced increase in sperm [Ca2+]i and the AR triggered by the toxin, Tpg and zona pellucida. These results suggest that putative MTX-activated channels may be involved in the Ca2+ influx required for mouse sperm AR. 相似文献
7.
8.
Voltage-dependent K+ currents and underlying single K+ channels in pheochromocytoma cells 总被引:7,自引:4,他引:7 下载免费PDF全文
Properties of the whole-cell K+ currents and voltage-dependent activation and inactivation properties of single K+ channels in clonal pheochromocytoma (PC-12) cells were studied using the patch-clamp recording technique. Depolarizing pulses elicited slowly inactivating whole-cell K+ currents, which were blocked by external application of tetraethylammonium+, 4-aminopyridine, and quinidine. The amplitudes and time courses of these K+ currents were largely independent of the prepulse voltage. Although pharmacological agents and manipulation of the voltage-clamp pulse protocol failed to reveal any additional separable whole-cell currents in a majority of the cells examined, single-channel recordings showed that, in addition to the large Ca++-dependent K+ channels described previously in many other preparations, PC-12 cells had at least four distinct types of K+ channels activated by depolarization. These four types of K+ channels differed in the open-channel current-voltage relation, time course of activation and inactivation, and voltage dependence of activation and inactivation. These K+ channels were designated the Kw, Kz, Ky, and Kx channels. The typical chord conductances of these channels were 18, 12, 7, and 7 pS in the excised configuration using Na+-free saline solutions. These four types of K+ channels opened in the presence of low concentrations of internal Ca++ (1 nM). Their voltage-dependent gating properties can account for the properties of the whole-cell K+ currents in PC-12 cells. 相似文献
9.
Ko EA Burg ED Platoshyn O Msefya J Firth AL Yuan JX 《American journal of physiology. Cell physiology》2007,293(3):C928-C937
Mice are useful animal models to study pathogenic mechanisms involved in pulmonary vascular disease. Altered expression and function of voltage-gated K+ (KV) channels in pulmonary artery smooth muscle cells (PASMCs) have been implicated in the development of pulmonary arterial hypertension. KV currents (IK(V)) in mouse PASMCs have not been comprehensively characterized. The main focus of this study was to determine the biophysical and pharmacological properties of IK(V) in freshly dissociated mouse PASMCs with the patch-clamp technique. Three distinct whole cell IK(V) were identified based on the kinetics of activation and inactivation: rapidly activating and noninactivating currents (in 58% of the cells tested), rapidly activating and slowly inactivating currents (23%), and slowly activating and noninactivating currents (17%). Of the cells that demonstrated the rapidly activating noninactivating current, 69% showed IK(V) inhibition with 4-aminopyridine (4-AP), while 31% were unaffected. Whole cell IK(V) were very sensitive to tetraethylammonium (TEA), as 1 mM TEA decreased the current amplitude by 32% while it took 10 mM 4-AP to decrease IK(V) by a similar amount (37%). Contribution of Ca2+-activated K+ (KCa) channels to whole cell IK(V) was minimal, as neither pharmacological inhibition with charybdotoxin or iberiotoxin nor perfusion with Ca2+-free solution had an effect on the whole cell IK(V). Steady-state activation and inactivation curves revealed a window K+ current between –40 and –10 mV with a peak at –31.5 mV. Single-channel recordings revealed large-, intermediate-, and small-amplitude currents, with an averaged slope conductance of 119.4 ± 2.7, 79.8 ± 2.8, 46.0 ± 2.2, and 23.6 ± 0.6 pS, respectively. These studies provide detailed electrophysiological and pharmacological profiles of the native KV currents in mouse PASMCs. KV channels 相似文献
10.
11.
Although the protein tyrosine kinase (PTK) inhibitor, genistein, has been widely used to investigate the possible involvement of PTK during reproductive functions, it is unknown whether it modulates sperm calcium channel activity. In the present study, we recorded T-type calcium currents (I(Ca,T)) in mouse spermatogenic cells using whole-cell patch clamp and found that extracellular application of genistein reversibly decreased I(Ca,T) in a concentration-dependent manner (IC(50) approximately 22.7 microM). To determine whether TK activity is required for I(Ca,T) inhibition, we found that peroxovanadate, a tyrosine phosphatase inhibitor, was ineffective in preventing the inhibitory effect of genistein. Furthermore, intracellular perfusion of the cells with ATP-gamma-S also did not alter the inhibitory effect of genistein. To further reveal the direct inhibitory mechanism of genistein on I(Ca,T), we applied into the bath lavendustin A, a PTK inhibitor structurally unrelated to genistein, and found that the current amplitude remained unchanged. Moreover, daidzein, an inactive structural analog of genistein, robustly inhibited the currents. The inhibitory effect of genistein on T-type calcium channels was associated with a hyperpolarizing shift in the voltage-dependence of inactivation. Genistein was observed to decrease sperm motility and to significantly inhibit sperm acrosome reaction (AR) evoked by zona pellucida. Using transfected HEK293 cells system, only Cav3.1 and Cav3.2, instead of Cav3.3, channels were inhibited by genistein. Since T-type calcium channels are the key components in the male reproduction, such as in AR and sperm motility, our data suggest that this PTK-independent inhibition of genistein on I(Ca,T) might be involved in its anti-reproductive effects. 相似文献
12.
Matthias H Traut Dieter Berg Ulrike Berg Artur Mayerhofer Lars Kunz 《Reproductive biology and endocrinology : RB&E》2009,7(1):28-10
Background
Granulosa cells (GCs) represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa) of big conductance (BKCa), which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine) via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits), and 2. biophysical properties of BKCa channels. 相似文献13.
Identification of antigen in rat spermatogenic cells interacting with an anti-human sperm monoclonal antibody 总被引:3,自引:0,他引:3
A monoclonal antibody (MAb) raised against human sperm protein, designated YWK-II, was used to determine the distribution of antigens in rat spermatozoa and rat testicular germ cells. By an indirect immunofluorescent method, the antibody localized over the rat spermatozoal head, except for the postacrosomal region. In paraffin sections of adult and immature rat testis, germ cells, at every developmental stage, and Sertoli cells stained, while interstitial cells and peritubular myoid cells remained unstained. When cocultures of Sertoli and germ cells were tested, only the germ cells stained intensely. Sertoli cells and peritubular myoid cells in cultures did not stain. In the epididymal sections, strong staining occurred with spermatozoa in the lumen and epididymal epithelial cells, with moderate staining in the myoid layers of epididymis. To determine the sperm antigen interacting with the YWK-II antibody, rat spermatozoa proteins were prepared and analyzed by an immunoblot technique. The monoclonal antibody interacted with a single protein, with an estimated molecular weight of 115,000, present in the cauda epididymal spermatozoa. Among the proteins of the caput epididymal spermatozoa, however, the antibody interacted with a major and a minor band with molecular weights of 115,000 and 88,000, respectively. On the other hand, with proteins prepared from the membrane fraction of adult and immature rat testis, the antibody reacted with two bands with estimated molecular weights of 88,000 and 115,000. In the lysate prepared from germ cells dissociated from Sertoli-germ cell cocultures, the antibody recognized only the 88,000 protein. The present results show that the YWK-II MAb interacts with two proteins with different molecular weights. The amount of the interacting proteins in spermatozoa varied with their location within the epididymis. 相似文献
14.
Though voltage-dependent Ca(2+) channels contribute to the orchestration of sperm differentiation and function, many questions remain concerning their molecular architecture. This study shows that alpha(1A) and alpha(1C) Ca(2+) channel pore-forming subunits are expressed in spermatogenic cells. In addition, it provides what is to our knowledge the first evidence for the presence of the Ca(2+) channel beta auxiliary subunits in spermatogenic cells and sperm. Using RT-PCR we demonstrated the expression of all four known genes encoding the beta subunits in spermatogenic cells. Specific antibodies detected three of these proteins in spermatogenic cells and sperm. In spermatogenic cells both alpha(1) and beta subunits are diffusely distributed throughout the cytoplasm while in sperm they appear to be regionally localized. 相似文献
15.
Functions of erg K+ channels in excitable cells 总被引:1,自引:0,他引:1
Ether-à-go-go-related gene (erg) channels are voltage-dependent K+ channels mediating inward-rectifying K+ currents because of their peculiar gating kinetics. These characteristics are essential for repolarization of the cardiac action potential. Inherited and acquired malfunctioning of erg channels may lead to the long QT-syndrome. However, erg currents have also been recorded in many other excitable cells, like smooth muscle fibres of the gastrointestinal tract, neuroblastoma cells or neuroendocrine cells. In these cells erg currents contribute to the maintenance of the resting potential. Changes in the resting potential are related to cell-specific functions like increase in hormone secretion, frequency adaptation or increase in contractility. 相似文献
16.
Single-channel currents were recorded from Ca2+-activated or ATP-sensitive K+ channels in inside-out membrane patches excised from isolated mouse toe muscles. In addition to the closed and fully open configurations, both types of channels may exhibit several intermediate low-conductance states which are clustered near multiples of elementary conductance units. The units are 1/8 or 1/6 of the channel conductance for Ca2+-activated channels and 1/4 or 1/3 for ATP-sensitive channels. Normally, low-conductance states are rare, but they occur more frequently directly after patch excision. An increased probability of low-conductance states of ATP-sensitive K+ channels was also observed in the presence and during washout of the internal channel blocker adenine. The results suggest that Ca2+-activated and ATP-sensitive K+ channels are composed of several membrane pores with strong positive cooperativity among the elementary conductance units. 相似文献
17.
Two-pore domain potassium channels (2PK) make up the newest branch of the potassium channel super-family. The channels are time- and voltage-independent and carry leak or "background" currents that are regulated by many different signaling molecules. These currents play an important role in setting the resting membrane potential and excitability of excitable cells, and, as a consequence, modulation of 2PK channel activity is thought to underlie the function of physiological processes as diverse as the sedation of anesthesia, regulation of normal cardiac rhythm and synaptic plasticity associated with simple forms of learning. Lipids, including arachidonate and its lipoxygenase metabolites, platelet-activating factor and anandamide have been identified as important mediators of some 2PK channels. Regulation can be effected by several different mechanisms. Some channels are regulated by G-protein-coupled receptors using well described signaling pathways that terminate in the activation of protein kinase C, whereas others are modulated by the direct interaction of the lipid with the channel. 相似文献
18.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4
m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4
m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+. 相似文献
19.
The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K(+) channels play critical roles in normal physiology. Over 90 different genes for K(+) channels have been identified in the human genome. Epithelial K(+) channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K(+) channels is to recycle K(+) across the basolateral membrane for proper function of the Na(+)-K(+)-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K(+) channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a "K(+) channel gene family" approach in presenting the representative basolateral K(+) channels of the nephron. The basolateral K(+) channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. 相似文献
20.
Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells 总被引:5,自引:0,他引:5
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated. 相似文献