共查询到20条相似文献,搜索用时 0 毫秒
1.
Marilena Tauro Antonio Laghezza Fulvio Loiodice Mariangela Agamennone Cristina Campestre Paolo Tortorella 《Bioorganic & medicinal chemistry》2013,21(21):6456-6465
The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the ‘vicious cycle’ occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs.In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform.In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure–activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies. 相似文献
2.
Niu X Umland S Ingram R Beyer BM Liu YH Sun J Lundell D Orth P 《Archives of biochemistry and biophysics》2006,451(1):43-50
TNFalpha converting enzyme (TACE) is the major metalloproteinase for the processing of TNFalpha, a key inflammatory cytokine. IK682, a hydroxamate compound, was reported to be a potent and specific TACE inhibitor [J.J. Duan, L. Chen, Z.R. Wasserman, Z. Lu, R.Q. Liu, M.B. Covington, M. Qian, K.D. Hardman, R.L. Magolda, R.C. Newton, D.D. Christ, R.R. Wexler, C.P. Decicco, J. Med. Chem. 45 (2002) 4954-4957]. The binding kinetics of IK682 and the ectodomain of human TACE was examined. The k(on) of IK682 was determined as 1.1+/-0.3 x 10(8) M(-1) min(-1). No detectable dissociation of IK682 from TACE was observed following dialysis, dilution, and extensive washing over a maximum of 72 h. This was in contrast to the rapid dissociation of IK682 from ADAM10. LC/MS analysis of the TACE-IK682 complex after dissociation under denaturing conditions indicated that the tight binding is not due to covalent interaction. The X-ray crystal structure of TACE-IK682 complex revealed multiple binding points at the S1' and S3' sites and the movement of a loop (from Ala349 to Gly442) to accommodate the binding of the quinolinyl group of IK682 at the S3' pocket. The conformational changes of TACE may contribute significantly to the high affinity binding as a result of a more stable TACE-inhibitor complex. 相似文献
3.
Griffith DM Szocs B Keogh T Suponitsky KY Farkas E Buglyó P Marmion CJ 《Journal of inorganic biochemistry》2011,105(6):763-769
Reaction of the potent hydroxamate-based histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), with hydrated metal salts of Fe(III), Cu(II), Ni(II) and Zn(II) yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) both in the solid state and in solution. Reaction of the secondary hydroxamic acid, N-Me-SAHA, also yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) in solution. These metal complexes have the hydroxamato moiety coordinated in an O,O’-bidentate fashion. Stability constants of the metal complexes formed with SAHA and N-Me-SAHA in a DMSO/H2O 70/30%(v/v) mixture are described. A novel crystal structure of SAHA together with a novel synthesis for N-Me-SAHA are also reported. 相似文献
4.
Seng HL Ong HK Rahman RN Yamin BM Tiekink ER Tan KW Maah MJ Caracelli I Ng CH 《Journal of inorganic biochemistry》2008,102(11):1997-2011
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)6, ds(AT)6 and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via π…π interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. 相似文献
5.
A quantitative structure-activity relationship (QSAR) study has been made on a series of piperidine sulfonamide aryl hydroxamic acid analogs acting as matrix metalloproteinase (MMP) inhibitors. The inhibitory potencies of the compounds against two MMPs, MMP-2 and MMP-13, are found to be significantly correlated with the hydrophobic properties of the molecules, suggesting that in both enzymes the hydrophobic interaction is playing a dominant role. 相似文献
6.
Devappa S. Lamani S. G. Badiger K. R. Venugopala Reddy H. S. Bhojya Naik 《Nucleosides, nucleotides & nucleic acids》2013,32(9):498-517
AbstractThe present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities. 相似文献
7.
Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains,modules, and exosites 总被引:13,自引:0,他引:13
Overall CM 《Molecular biotechnology》2002,22(1):51-86
The function of ancillary domains and modules attached to the catalytic domain of mutidomain proteases, such as the matrix
metalloproteinases (MMPs), are not well understood. The importance of discrete MMP substrate binding sites termed exosites on domains located outside the catalytic domain was first demonstrated for native collagenolysis. The essential role of hemopexin
carboxyl-domain exosites in the cleavage of noncollagenous substrates such as chemokines has also been recently revealed.
This article updates a previous review of the role of substrate recognition by MMP exosites in both preparing complex substrates,
such as collagen, for cleavage and for tethering noncollagenous substrates to MMPs for more efficient proteolysis. Exosite
domain interaction and movements—“molecular tectonics”—that are required for native collagen triple helicase activity are
discussed. The potential role of collagen binding in regulating MMP-2 (gelatinase A) activation at the cell surface reveals
unexpected consequences of substrate interactions that can lead to collagen cleavage and regulation of the activation and
activity of downstream proteinases necessary to complete the collagenolytic cascade. 相似文献
8.
The Zn(II) complexes of two bipyridyl derivatives with trimethylaminomethyl groups, [Zn(L1)3](ZnBr4)(ClO4)2Br4 · 12H2O (1) and [Zn(L2)3](ClO4)8 · H2O (2) (L1 = [4,4′-(Me3NCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl), were synthesized and characterized. The structure of complex 1 has been determined by X-ray diffraction, and the configuration of ligand-coordinated Zn(II) ion can be well described as distorted octahedral. Species distribution of both complexes in aqueous solution was investigated by potentiometeric titration. DNA-binding ability of both complexes was studied by UV spectroscopy titration. Under hydrolytic condition, both complexes (150 μM) can effectively cleave plasmid pBR322 DNA from supercoiled to nicked form, giving hydrolysis rate constants of 2.63 × 10−5 and 9.92 × 10−5 s−1, respectively (pH 7.75, 37 °C). The result shows that complex 2 is one of the most active artificial nucleases based on zinc. 相似文献
9.
Hassan Mansouri-Torshizi Sareh Zareian-Jahromi Arezou Ghahghaei Somaye Shahraki Fatemeh Khosravi Mostafa Heidari Majd 《Journal of biomolecular structure & dynamics》2018,36(11):2787-2806
In this work, a pair of new palladium(II) complexes, [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)], (where Gly is glycine, Phe is phenylalanine, and Tyr is tyrosine) were synthesized and characterized by UV–Vis, FT-IR, elemental analysis, 1H-NMR, and conductivity measurements. The detailed 1H NMR and infrared spectral studies of these Pd(II) complexes ascertain the mode of binding of amino acids to palladium through nitrogen of -NH2 and oxygen of -COO? groups as bidentate chelates. The Pd(II) complexes have been tested for in vitro cytotoxicity activities against cancer cell line of K562. Interactions of these Pd(II) complexes with CT-DNA and human serum albumin were identified through absorption/emission titrations and gel electrophoresis which indicated significant binding proficiency. The binding distance (r) between these synthesized complexes and HSA based on Forster?s theory of non-radiation energy transfer were calculated. Alterations of HSA secondary structure induced by complexes were confirmed by FT-IR measurements. The results of emission quenching at three temperatures have revealed that the quenching mechanism of these Pd(II) complexes with CT-DNA and HSA were the static and dynamic quenching mechanism, respectively. Binding constants (Kb), binding site number (n), and the corresponding thermodynamic parameters were calculated and revealed that the hydrogen binding and hydrophobic forces played a major role when Pd(II) complexes interacted with DNA and HSA, respectively. We bid that [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)] complexes exhibit the groove binding with CT-DNA and interact with the main binding pocket of HSA. The complexes follow the binding affinity order of [Pd(Gly)(Tyr)] > [Pd(Gly)(Phe)] with CT-DNA- and HSA-binding. 相似文献
10.
The potentially fluorescent terdentate ligand bis-quinolin-8-yl-amine (BQAH) yields the bis-chelate complexes [M(BQAH)2](ClO4)2 (M = Zn, Cd, Hg) and the mono-chelate [M(BQAH)Cl2] (M = Zn, Cd). The aminic proton of the coordinated BQAH displays a remarkable acidity. Thus, in polar solvents (CH3CN and methanol) the formation of the deprotonated derivatives [M(BQA)2] and [M(BQA)Cl] is observed whose absorption and fluorescent spectra are identical with those of independently synthesized complexes (M = Zn). The affinity of the ligand BQAH with the metals of the zinc triad was studied in CH3CN; the stability constants related to the complex [M(BQAH)(CH3CN)]2+ (β1) and [M(BQAH)2]2+ (β2) were determined and compared with those calculated in the case of the ligand 8-[(2-pyridylmethyl)amino]-quinoline (NNN(Qui)) in the same solvent. Owing to the enhanced rigidity of the ligand BQAH, a marked selectivity in coordinating the Zn2+ cation with respect to the larger Cd2+ was apparent. In the case of mercury, the equilibrium constant value was also confirmed by means of 1H NMR technique. The low lying excited state of the BQAH and NNN(Qui) systems is ligand centered and fluo-solvato-chromism analysis reveals that in protic solvents an inter-molecular hydrogen bond between the aminic proton in the excited state and the solvent itself efficiently quenches the fluorescent signal. Coordination with metals induces a hypsochromic displacement of the absorbance maxima measured in CH2Cl2 with respect to those of the free ligands. On the contrary in CH3OH the complete deprotonation of the coordinated BQAH induces a bathochromic displacement of the absorption maxima at 480 nm. In CH3OH the fluorescent emissions of the mono- and bis-chelate deprotonated BQA− complexes at ≈600 nm display a very low quantum yield and a reduced Stokes shift as compared with that of the protonated species. Such an increase can be related to the enhanced rigidity of the deprotonated ligand inducing a tight coplanarity of the aromatic rings in the first excited state. Eventually the metal coordination, while reducing the energy of the fluorescent emission of both ligands in CH2Cl2, does not inhibit the non radiative relaxation pathways in the BQAH system. 相似文献
11.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened. 相似文献
12.
Studies of the metal-binding affinity of protein sites are ubiquitous in bioinorganic chemistry and are valuable for the information that they can provide about metal speciation and exchange in biological systems. The potential for error in these studies is high, however, since many competing equilibria are present in solution and must be taken into consideration. Here, we report a new spectropotentiometric titration apparatus that allows pH and UV-vis absorption to be monitored simultaneously on small samples under inert atmosphere. In addition, we explain how data obtained from the complex equilibria can be combined with tabulated information about the protonation and metal-binding constants for common buffers to provide detailed, quantitative information about metal-protein interactions. Application of this approach to the investigation of metal binding to structural zinc-binding domains and common pitfalls encountered when performing these experiments are also discussed. We have used this approach to reevaluate the metal-binding constants of the N-terminal zinc-binding peptide from the HIV-1 nucleocapsid protein (10(-8)M=K(d)(Co)=10(-7)M; 10(-11)M=K(d)(Zn)=10(-10)M). 相似文献
13.
Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli
Liliya A. Yatsunyk J. Allen Easton Lydia R. Kim Stacy A. Sugarbaker Brian Bennett Robert M. Breece Ivan I. Vorontsov David L. Tierney Michael W. Crowder Amy C. Rosenzweig 《Journal of biological inorganic chemistry》2008,13(2):271-288
ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity,
and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures,
is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several
yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide
additional insight into possible residues involved in this second site. The second site is also detected by metal analysis
and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K
d < 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD
data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
Hassan Mansouri-Torshizi Sareh Zareian-Jahromi Khatereh Abdi Maryam Saeidifar 《Journal of biomolecular structure & dynamics》2019,37(13):3566-3582
Two novel, neutral and water soluble Pd(II) complexes of formula [Pd(Gly)(Ala)] (1) and [Pd(Gly)(Val)] (2) (Gly, Ala, and Val are anionic forms of glycine, alanine, and valine amino acids, respectively) have been synthesized and characterized by FT-IR, UV–Vis, 1H-NMR, elemental analysis, and molar conductivity measurement. The data revealed that each amino acid binds to Pd(II) through the nitrogen of –NH2 and the oxygen of –COO– groups and acts as a bidentate chelate. These complexes have been assayed against leukemia cells (K562) using MTT method. The results indicated that both of the complexes display more cytotoxicity than the well-known anticancer drug, cisplatin. The interaction of the compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) were assayed by a series of experimental techniques including electronic absorption, fluorescence, viscometry, gel electrophoresis, and FT-IR. The results indicated that the two complexes have interesting binding propensities toward CT-DNA as well as HSA and the binding affinity of (1) is more than (2). The fluorescence data indicated that both complexes strongly quench the fluorescence of ethidium bromide–DNA system as well as the intrinsic fluorescence of HSA via static quenching procedures. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) calculated from the fluorescence studies showed that hydrogen bonds and van der Waals interactions play a major role in the binding of the complexes to DNA and HSA. We suggest that both of the Pd(II) complexes exhibit the groove binding mode with CT-DNA and interact with the main binding pocket of HSA.
Communicated by Ramaswamy H. Sarma 相似文献
15.
Odani A Kozlowski H Swiatek-Kozlowska J Brasuń J Operschall BP Sigel H 《Journal of inorganic biochemistry》2007,101(4):727-735
Previously published stability constants of several metal ion (M2+) complexes formed with thiouridines and their 5'-monophosphates, together with recently obtained log K(M(U))(M) versus pK(U)(H) plots for M2+ complexes of uridinate derivatives (U-) allowed now a quantitative evaluation of the effect that the exchange of a (C)O by a (C)S group has on the stability of the corresponding complexes. For example, the stability of the Ni2+, Cu2+ and Cd2+ complexes of 2-thiouridinate is increased by about 1.6, 2.3, and 1.3 log units, respectively, by the indicated exchange of groups. Similar results were obtained for other thiouridinates, including 4-thiouridinate. The structure of these complexes and the types of chelates formed (involving (N3)- and (C)S) are discussed. A recently advanced method for the quantification of the chelate effect allows now also an evaluation of several complexes of thiouridinate 5'-monophosphates. In most instances the thiouracilate coordination dominates the systems, allowing only the formation of small amounts of phosphate-bound isomers. Among the complexes studied only the one formed by Cu2+ with 2-thiouridinate 5'-monophosphate leads to significant amounts of the macrochelated isomer, which means that in this case Cu2+ is able to force the nucleotide from the anti to the syn conformation, allowing thus metal ion binding to both potential sites and this results in the formation of about 58% of the macrochelated isomer. The remaining 42% are species in which Cu2+ is overwhelmingly coordinated to the thiouracilate residue; Cu2+ binding to the phosphate group occurs in this case only in trace amounts. 相似文献
16.
Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes. 相似文献
17.
To compare the substrate preferences of rat brain neurolysin and cancer-producing matrix metalloproteinases (MMPs), which
have the same architecture in their catalytic domains, the cleavage activity of neurolysin toward MMP-specific fluorescence-quenching
peptides was quantitatively measured. The results show that neurolysin effectively cleaved MOCAc [(7-methoxy coumarin-4-yl)
acetyl]-RPKPYANvaWMK(Dnp[2,4-dinitrophenyl])-NH2, a specific substrate of MMP-2 and MMP-9, but hardly cleaved MOCAc-RPKPVENvaWRK(Dnp)-NH2, a specific substrate of MMP-3, suggesting that neurolysin has a similar substrate preference to MMP-2 and MMP-9. A structural
comparison between neurolysin and MMP-9 showed the similar key amino acid residues for substrate recognition. The possible
application of neurolysin displayed on the yeast cell surface, as a safe protein alternative to MMP-2 and MMP-9 which induce
cancer cell growth, invasion, and metastasis, to analysis of properties of the MMPs, including the screening of inhibitors
and analysis of inhibition mechanism etc., are also discussed. 相似文献
18.
Mizoguchi H Yamada K Mouri A Niwa M Mizuno T Noda Y Nitta A Itohara S Banno Y Nabeshima T 《Journal of neurochemistry》2007,102(5):1548-1560
Matrix metalloproteinases (MMPs) and its inhibitors (TIMPs) function to remodel the pericellular environment. We have demonstrated that methamphetamine (METH)-induced behavioral sensitization and reward were markedly attenuated in MMP-2- and MMP-9 deficient [MMP-2-(-/-) and MMP-9-(-/-)] mice compared with those in wild-type mice, suggesting that METH-induced expression of MMP-2 and MMP-9 in the brain plays a role in the development of METH-induced sensitization and reward. In the present study, we investigated the changes in TIMP-2 expression in the brain after repeated METH treatment. Furthermore, we studied a role of MMP/TIMP system in METH-induced behavioral changes and dopamine neurotransmission. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in TIMP-2 expression. Antisense TIMP-2 oligonucleotide (TIMP-AS) treatment enhanced the sensitization, which was associated with the potentiation of METH-induced dopamine release in the nucleus accumbens (NAc). On the other hand, MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference, a measure of the rewarding effect, and reduced the METH-increased dopamine release in the NAc. Dopamine receptor agonist-stimulated [(35)S]GTPgammaS binding was reduced in the frontal cortex of sensitized rats. TIMP-AS treatment potentiated, while MMP-2/-9 inhibitor attenuated, the reduction of dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding. Repeated METH treatment also reduced dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding in wild-type mice, but such changes were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that the MMP/TIMP system is involved in METH-induced behavioral sensitization and reward, by regulating dopamine release and receptor signaling. 相似文献
19.
Swiatek-Kozlowska J Brasuń J Łuczkowski M Makowski M 《Journal of inorganic biochemistry》2002,90(3-4):106-112
The study on the binding ability of dehydro-tri- and tetrapeptides has shown that the ,β-double bond has a critical effect on the peptide coordination to metal ions. It may affect the binding of the vicinal amide nitrogens by the electronic effect and stabilize the complex due to steric effects. The (Z) isomer is the most effective in stabilizing of the complexes formed. The presence of large side chain in the dehydroamino acid residue may also be critical for the coordination mode in the metallopeptide systems. 相似文献
20.
Işlekel H Oktay G Terzi C Canda AE Füzün M Küpelioğlu A 《Cell biochemistry and function》2007,25(4):433-441
The balance between matrix metalloproteinases (MMPs) and their physiological tissue inhibitors of matrix metalloproteinases (TIMPs) is crucial in tumour invasion and progression. The aim of this study was to investigate the levels of MMP-9, MMP-3 and TIMP-1 in colorectal cancer (CRC) and to evaluate these proteinases and their inhibitor with respect to clinicopathological variables. Activities of pro- and active MMP-9 were measured in paired tumour and distant normal tissue specimens from 43 patients with CRC using gelatin zymography. ELISA was employed for the determination of MMP-9, MMP-3 and TIMP-1 protein expressions. The activity levels of pro- and active MMP-9 and protein expression levels of MMP-9, MMP-3 and TIMP-1 were higher in tumour tissues than in the corresponding normal tissues; the differences being significant for all (p < 0.05), except TIMP-1. Similarly, active MMP-9/proMMP-9 and the ratio of protein expression level of MMP-9-TIMP-1 were found to be significantly higher in tumour tissues ( p < 0.01). Among all the clinicopathological variables investigated, significant correlations were found between MMP-9 and presence of perineural invasion, MMP-3 and lymph node status, TIMP-1 and tumour differentiation, MMP-9/TIMP-1 ratio and histological types ( p < 0.05). In conclusion, MMP-3 was not as notably increased as MMP-9 in tumour tissues. However, different roles may be attributed to MMP-9 and MMP-3 in CRC development and progression. Additionally, assessment of TIMP-1 in relation to MMPs appeared to be crucial in CRC studies to provide a basis for the re-evaluation of the clinical usefulness of TIMP-1 in colorectal cancer. 相似文献