首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dynamics during forest succession in Costa Rica   总被引:5,自引:0,他引:5  
Soil seed banks and current seed inputs each play a role in tropical succession. We compared the abundance and floristic composition of seeds from these two sources at a Costa Rican site by germinating seeds from the soil, measuring seed inputs for 3 yr, and monitoring the earliest colonists in a forest clearing.There were an estimated 6800 viable seeds/m2 in the soil of 3.3-yr-old vegetation, 9500 seeds/m2 in 11-yr-old vegetation, and 7000 seeds/m2 in a 75-yr-old forest. An estimated 10100 seeds/m2 fell on the soil surface of the young successional vegetation during 3 yr and 3700 seeds/m2 fell during that same time in the forest.Locally produced seeds accounted for about 75% of the seed input to the soil surface early in succession. Seeds dispersed out of young successional vegetation increased the quantity and species richness of the seed input and storage in an adjacent forest. Much of the species richness of the young successional vegetation resulted from seeds dispersed there from other communities by animals.Deforestation stimulated germination of most seeds in the surface soil of the old forest, including seeds of the dominant canopy tree. The recruitment of seedlings from the soil seed bank numerically overwhelmed that from post-disturbance seed rain and sprouts.We evaluated patterns of soil seed storage during succession and predicted the ability of vegetation of differing ages to respond to disturbance. Immediately after disturbance the number of seeds in the soil plummeted due to mortality, low inputs, and germination. As the vegetation regrew, the soil seed bank increased to a peak after 4 to 7 yr, then gradually decreased to its pre-disturbance size. High-frequency pulses of disturbance should result in reduced species richness, dominance by species with long-lived seeds, and fast recovery by seedling recruitment from the soil seed bank.Journal series number 6459 from the Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.Reprint requests to J. J. E. at Florida.  相似文献   

2.
To investigate long-term effects of land use on the soil seed bank, we compared the abundance/density, species richness, life form distribution, and species composition of seeds stored in the soil of four 15–20 yr-old second-growth stands, two old-growth stands, and two previously selectively-logged stands in the Caribbean lowlands of Costa Rica. Surface soil (10 cm deep, 4.7 cm diameter) was collected at 10 m intervals along three 120–160 m long transects in each stand (44–48 soil cores, 22–24 combined seed bank samples per site). Seed density was highest but variable in second-growth stands (8331–14535 seeds/m2), low and homogeneous in old-growth stands (2258–2659 seeds/m2), and intermediate and highly variable in selectively-logged stands (1165–6854 seeds/m2), which also had contrasting logging intensities. Species richness was strongly dependent on seed density, but showed less variation. Life form distribution did not differ statistically among or within land-use categories. In each stand, herbs-forbs, shrubs, and vines dominated the seed bank (> 75% of the species richness and abundance), whereas trees were a minor component (< 20% of the species richness and < 5% of the abundance) and were predominandy early successional. Shrubs and vines were most abundant in second-growth stands where regrowth vegetation was repeatedly cut before abandonment, whereas grasses and sedges were most abundant in the only forest stand that was completely surrounded by pastures. In terms of species composition, old-growth stands were more similar to selectively-logged stands than to second-growth stands, but across stands, selectively-logged forests were most distinct from the other two forest types. An inventory of the standing woody vegetation in each site showed little representation of the woody taxa found in the seed bank. We discuss these results in the context of the main factors that have been postulated to influence the abundance, life form, and species composition of tropical forest seed banks, and explore the role of the latter during intermediate phases of tropical forest succession and regeneration.  相似文献   

3.
Red land crabs (Gecarcoidea natalis) are both abundant and widespread in intact rainforest on Christmas Island, Indian Ocean, occurring at densities of ~ 1 crab m–2. We used an on-going exclusion experiment to test the hypothesis that through their activities as seed predators and soil disturbers, these omnivores are important determinants of the density and relative species abundance of seeds in the soil seed bank of undisturbed primary rainforest. After 6.5 y of continuous crab exclusion, there was no significant difference in the density of seeds in the top 3 cm of soil between the control (3671 ± 517 seeds/0.19 m2) and exclusion plots (3285 ± 801 seeds/0.19 m2), nor was there any significant treatment difference in relative species composition. There were also no significant treatment differences when Muntingia calabura, which accounted for 91.9% of all seeds in the seed bank, was excluded from the analyses. We attribute the lack of a significant impact of red crabs to their probable inability to handle the very small seeds which occurred in the seed bank, and the low level of soil disturbance at the study site. We conclude that the observed impact of red crabs on the abundance and diversity of successional species in natural light gaps on Christmas Island is due to their impact on germinating seedlings alone, rather than any additional impact on the soil seed bank.  相似文献   

4.
Abstract. We used a forest chronosequence at the Barro Colorado Nature Monument (BCNM) to examine changes in the abundance and species composition of seeds in the soil during forest succession. At each of eight sites varying from 20 yr to 100 yr since abandonment, and at two old-growth (> 500 yr) forest stands, we established two 160-m transects and sampled the surface 0–3 cm of soil in cores collected at each 5 m interval. Seed densities were estimated from the number of seedlings germinated from the soil over a six-week period. Contrary to expectation, neither the density of the soil seed bank, nor species richness or diversity were directly related to age since abandonment, but the density of the soil seed bank was correlated with the abundance of seed-bank-forming species in the standing vegetation. In marked contrast to published studies, herbaceous taxa were rare even in the youngest stands, and the common tree species, which accounted for most seeds in the soil, were present in all stands. The pioneer tree Miconia argentea (Melastomataceae) was the single most common species in the seed bank, accounting for 62% of seeds and present in 92% of soil samples. Rapid recovery of the vegetation of young regrowth stands on BCNM, when compared to sites elsewhere may be partly due to allochthonous seed rain from nearby mature forest stands and the lack of seed inputs of weeds and grasses from agricultural and pasture lands which may inhibit forest succession.  相似文献   

5.
This study aimed to evaluate variations in the seed bank within a 3-year temporal series in order to answer the following questions: 1) Does the seed bank's species richness and seed density differ among climatic seasons and between years? 2) Are there differences in the richness and density of seed banks between the litter and mineral soil? 3) Can the seed bank's species richness and seed density be explained by characteristics such as the previous year's precipitation and soil depth (litter or mineral soil)? The samples were collected from litter and mineral soil (0–5 cm), in 210 sub-plots, during the dry and rainy seasons of each year (August 2005 through February 2008). Overall, 79 species were recorded. On average, 1 168, 304 and 302 seeds.m−2 were recorded in the seed bank during years I, II and III, respectively. This study showed that the Caatinga's seed bank is rich in herbaceous species, yet species' density and richness are low in the litter. Furthermore, about 43% of the variation in species richness and density was explained by soil depth (litter and mineral soil) and previous years' rainfall.  相似文献   

6.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   

7.
The extreme species richness of native shrubland vegetation (kwongan) near Eneabba, Western Australia, presents a major problem in the restoration of sites following mineral sand mining. Seed sources available for post-mining restoration and those present in the native kwongan vegetation were quantified and compared. Canopy-borne seeds held in persistent woody fruits were the largest seed source of perennial species in the undisturbed native vegetation and also provided the most seeds for restoration. In undisturbed vegetation, the germinable soil seed store (140–174 seeds · m?2) was only slightly less than the canopy-borne seed store (234–494 seeds · m?2), but stockpiled topsoil provided only 9% of the germinable seeds applied to the post-mining habitat. The age of stockpiled soil was also important. In the three-year-old stockpiled topsoil, the seed bank was only 10.5 seeds · m?2 in the surface 2.5 cm, compared to 56.1 to 127.6 seeds · m?2 in fresh topsoil from undisturbed vegetation sites. In the stockpiled topsoil, most seeds were of annual species and 15–40% of the seeds were of non-native species. In the topsoil from undisturbed vegetation, over 80% of the seeds were of perennial species, and non-native species comprised only 2.7% of the seed bank. Additional seeds of native species were broadcast on restoration areas, and although this represented only 1% of the seed resources applied, the broadcast seed mix was an important resource for increasing post-mining species richness. Knowledge of the life-history characteristics of plant species may relate to seed germination patterns and assist in more accurate restoration where information on germination percentages of all species is not available.  相似文献   

8.
Ne'eman  Gidi  Izhaki  Ido 《Plant Ecology》1999,144(1):115-125
Soil samples from three microhabitats (gaps, beneath shrubs and beneath trees) in five stands of various post-fire ages (6–55 years) were collected in an east Mediterranean Aleppo pine Pinus halepensis forest. Total germinable seed bank densities varied between 300 and 1300 seeds per m2. Herbaceous taxa were the major constituents of the germinable seed bank in gaps, regardless of stand age. Perennials were the major components beneath shrubs in all stands except the youngest stand where herbaceous species were the major components in all microhabitats. Important tree and shrub species (e.g., Pinus halepensis, Quercus calliprinos, Pistacia lentiscus, Phillyrea latifolia) of the mature pine forest were not an important component of the soil seed bank and therefore, little resemblance was observed between the above-ground plant species composition and soil seed bank composition. This is consistent with the fact that these species regenerate by resprouting rather than by germination from the seed bank. Both microhabitats and forest-stands, which were of different ages, contributed to the variation in taxa richness, germinable seed density and diversity among samples. The effect of small-scale spatial heterogeneity (among microhabitats) was much more pronounced. In contrast to other studies, species richness, species diversity, and density of seed banks did not decrease with post-fire age. Moreover, stand age was a poor predictor for these attributes of the soil seed bank in an Aleppo pine forest. The heterogeneity plays an important role in conservation and management of this ecosystem.  相似文献   

9.
A nested sampling design was used to describe the spatial patterns for the species richness and composition in the seed bank and vegetation of three Mediterranean old-fields (1, 7, and 15 yr after the last ploughing). Three scales were examined hierarchically: sampling units within plots of 0.25 m2 for the vegetation and of 0.05 m2 for the seed bank, 100 m2 plots within fields, and fields of 1000 m2. In spite of the strong spatial variation among sampling units, species richness and composition of both seed bank and vegetation showed hierarchically structured patterns of heterogeneity, while each old-field was a homogeneous entity. These spatial patterns tended to be partially masked when the data were aggregated at the scale of the plot. Such results stress the use of a nested sampling design for studying variation in species richness and taxonomic composition in both vegetation and seed bank. This design, in combination with CCA, also showed that the vegetation showed a coarser grain than the seed bank, probably in relation to seed clumping.  相似文献   

10.
To identify factors affecting the spatial distribution of soil seed banks of herbaceous species in the Pantanal floodplain, Brazil, the aims of this study were: to characterize the seed bank in terms of the abundance, richness and composition of germinated seeds; to relate these characteristics to flood duration, elevation, chemical and physical properties of the soil and to examine the seed bank’s spatial pattern. Soil samples were collected at 14 points and were then placed in a greenhouse to allow germination to occur. Each sample point had the flood level monitored, the elevation measured and the soil properties identified. A total of 1710 seedlings from 26 species were recorded, of which Echinodorus tenelus was the most abundant (24.9%). Cyperaceae and Poaceae were the richest floristic families (5 species each), with Alismataceae the most represented in terms of number of individuals (36% of the total). Duration of flooding plays an important role in determining Pantanal soil seed banks. The flood pulse influences the abundance (r = 0.79; P = 0.006; partial), richness (r = 0.61; P = 0.02; partial) and composition of the soil seed bank (Pillai trace = 0.552; P = 0.027), carrying the seeds to areas where the duration of flood is longer. Except for aluminium, the soil characteristics expressed by the first principal component of PCA exert indirect positive effects on the seed bank. This is because this component was correlated with the duration of inundation (r = 0.76). Elevation and the toxic effect of aluminium do not vary sufficiently to be able to influence seed bank characteristics. The correlograms show that soil seed banks have no discernible spatial pattern, even though most species are dispersed hydrochorically. This suggests that, at the scale of the study, the tendency for flooding to cause homogeneous dispersion has no influence on seed‐bank spatial structure, because of the complexity of flood‐plain geomorphology. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The soil seed bank is a dynamic biotic component of plant communities that represents the population’s memory in relation to selective events. Few studies have investigated the natural stock of germinable seeds in the gallery forests to evaluate their regeneration potential, although they are target of anthropogenic action. Thus, seasonal, horizontal, and vertical qualitative and quantitative variations of the seed bank of a gallery forest in the Brazilian Cerrado were studied to test the influence of the climatic seasonality, the influence of the physical structure, and depth of the soil in different microhabitats of the forest in this natural seed store. It was also compared the richness and abundance of species in the germinable seed bank with the above-ground vegetation. Three hundred and seventy-five soil samples were collected at the beginning (April 1998 and 1999) and at the end of the dry season (September 1998). These samples were collected in three microhabitats distributed transversally in relation to drainage line of a large stream, at five depths. The density of germinable seeds decreases with depth, and is similar among microhabitats and seasons. In 24,690 cm3 of soil and 4.05 m2 of litter, 1390 seedlings emerged, being 743 dicotyledons and 647 monocotyledons. From 761 survivors, 263 were Cyperaceae, 206 Melastomataceae, 153 Poaceae, and 82 Onagraceae, the most abundant families. This study suggests that the diversity of the germinable soil seed bank is lower than that of the above-ground vegetation of the forest, and that the soil seed bank is not the principal regeneration form of this environment.  相似文献   

12.
The exploitation of non-timber forest products has been proposed as a sustainable way to exploit tropical forests, but such an opportunity remains to be proved. Here, we examine the impact of intensive açaí palm (Euterpe oleracea) management on the seed rain and soil seed bank in an estuarine forest landscape with a long history of forest management by locals in the Amazon region. Seed rain (100 80 cm2 collectors) and soil seed bank (100 30 cm2 samples) were monitored through a year across 20 forest stands, covering a gradient of açaí stem density (50–3575 açaí stems per ha). Seed rain and bank were dominated by açaí seeds (85.5%–85.8%) and by excluding them, seed rain and bank were low density and species poor, capturing a tiny subset from the local (17.91%–19.40%) and landscape woody flora (11.82%–14.55%). Moreover, autochthonous and vertebrated-dispersed predominated as well as those from tree species considered useful by locals. Overall, açaí stem density positively affected açaí seed abundance in the seed rain and negatively affected seed pools in the bank in relation to abundance of seeds and vertebrated dispersed, while adult tree species richness and density and accessibility to forest stands were associated with more diversified seed pools. Thereby, forest stands are exposed to different levels of açaí management (high vs. low intensity) supported taxonomically distinct seed pools. Our results suggest that açaí intensification disturbs seed rain and soil seed bank with potential impacts on forest regeneration and the forest integrity standards required to consider açaí fruit production as sustainable according to current legislation.  相似文献   

13.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

14.
Hui Luo  Keqin Wang 《生态学报》2006,(8):2432-2442
Soil seed bank plays an important role in the composition of different plant communities, especially in their conservation. Although soil seed bank, aboveground vegetation and their relationship have been the subject of much recent attention, little is known about the size and species composition of the soil seed bank and about the aboveground vegetation in the semiarid hillslope grasslands. There is limited understanding of how these components interact to determine the importance of seed banks in regeneration. In this study, the size and species composition of a soil seed bank and aboveground vegetation have been assessed in an experiment using 36 vegetation quadrats and 108 soil samples in terrace, slope, gully, and grazing land. This land represents a range of habitats within a hillslope grassland in Jinshajing hot-dry river valley of Yunnan, China. Terrace, slope, and gully represent restored sites and grazing land typifies unrestored sites. Twenty-one taxa in the seed bank were identified with a median and median density of 7 species/m2 and 5498 seeds/m2, respectively, whereas in the aboveground vegetation, 19 species were observed with a median and median density of 6 species/m2 and 1088 plants/m2, respectively. Both seed bank density and aboveground vegetation density among grazing land, gully, slope, and terrace differed significantly. There was an absolutely high proportion of herbaceous species in the seed bank and aboveground vegetation. Gramineae predominated over both seed bank and vegetation. The most frequent seeds and plants were Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv that had the highest individual number, importance value, and biomass. In the seed bank, the seeds of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 50.68% and 33.10% of the total seeds, respectively. In the aboveground vegetation, the individual number of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 55.66% and 29.86% of the total, respectively. The biomass of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for more than 70% of the total, reaching 206.71 g/m2 and 147.76 g/m2, respectively. Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv had the highest importance value of 193.01 and 159.99, respectively. Density, biomass, species richness, species diversity, and evenness were the highest in terrace land, whereas these were lowest in grazing land. Similarities between the seed bank and the aboveground vegetation were moderately high and not very different among slope, gully, and terrace lands, while for grazing land, they tended to increase when the restorative stage progressed. This result contrasts with some other studies where the seed bank contributes very little to the seedling flora and the vegetative growth clearly overwhelms sexual reproduction. The hypothesis about significant functional correlation between soil seed bank density and aboveground vegetation density is conformed. Correlation between soil seed bank density and aboveground vegetation density can be described in quadratic and cubic curves. The strong similarity between the vegetation and the seed bank is attributed to a large proportion of the species Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv., which are seed profusive and whose seeds have a significant viability in the ground. The high density, biomass, species richness, species diversity, and uniformity of the reclaimed site are related to the sufficiency of heat and water supplies for species establishment and growth in the site, which partly reflects the effective efforts for hillslope grassland restoration. It is believed that the efforts for vegetation restoration have altered the microhabitat conditions of the site and have provided a favorable habitat for species to establish and grow.  相似文献   

15.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank.  相似文献   

16.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

17.
Abstract

Different environments (initial forest, mature forest, Pinus and Eucalyptus stands) found in Seasonal Semideciduous Forest fragments affect the density of viable seeds, as well as the floristic similarity, diversity, and richness of tree species in soil seed banks. This hypothesis was tested in the current study. Soil seed bank samples were collected in the aforementioned environments during rainy and dry seasons, and taken to a shade house, where they remained under favorable seed germination conditions. Tree seedling emergence was measured, and sample species were identified every 15?days, for six months, in each sampling period. In total, 97 individuals m?2 and 23 species emerged in all environments and periods. The highest density of viable seeds of tree species in the soil seed bank was found in the initial forest stretch, mature forest stretch and abandoned Eucalyptus stand. Only the Pinus stand seed bank in the dry season had different floristic and lower viable seed density than the mature forest seed bank. Thus, all environments, except the abandoned Pinus stand, can preserved Seasonal Semideciduous Forest fragments.  相似文献   

18.
Luo H  Wang K Q 《农业工程》2006,26(8):2432-2442
Soil seed bank plays an important role in the composition of different plant communities, especially in their conservation. Although soil seed bank, aboveground vegetation and their relationship have been the subject of much recent attention, little is known about the size and species composition of the soil seed bank and about the aboveground vegetation in the semiarid hillslope grasslands. There is limited understanding of how these components interact to determine the importance of seed banks in regeneration. In this study, the size and species composition of a soil seed bank and aboveground vegetation have been assessed in an experiment using 36 vegetation quadrats and 108 soil samples in terrace, slope, gully, and grazing land. This land represents a range of habitats within a hillslope grassland in Jinshajing hot-dry river valley of Yunnan, China. Terrace, slope, and gully represent restored sites and grazing land typifies unrestored sites. Twenty-one taxa in the seed bank were identified with a median and median density of 7 species/m2 and 5498 seeds/m2, respectively, whereas in the aboveground vegetation, 19 species were observed with a median and median density of 6 species/m2 and 1088 plants/m2, respectively. Both seed bank density and aboveground vegetation density among grazing land, gully, slope, and terrace differed significantly. There was an absolutely high proportion of herbaceous species in the seed bank and aboveground vegetation. Gramineae predominated over both seed bank and vegetation. The most frequent seeds and plants were Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv that had the highest individual number, importance value, and biomass. In the seed bank, the seeds of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 50.68% and 33.10% of the total seeds, respectively. In the aboveground vegetation, the individual number of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 55.66% and 29.86% of the total, respectively. The biomass of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for more than 70% of the total, reaching 206.71 g/m2 and 147.76 g/m2, respectively. Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv had the highest importance value of 193.01 and 159.99, respectively. Density, biomass, species richness, species diversity, and evenness were the highest in terrace land, whereas these were lowest in grazing land. Similarities between the seed bank and the aboveground vegetation were moderately high and not very different among slope, gully, and terrace lands, while for grazing land, they tended to increase when the restorative stage progressed. This result contrasts with some other studies where the seed bank contributes very little to the seedling flora and the vegetative growth clearly overwhelms sexual reproduction. The hypothesis about significant functional correlation between soil seed bank density and aboveground vegetation density is conformed. Correlation between soil seed bank density and aboveground vegetation density can be described in quadratic and cubic curves. The strong similarity between the vegetation and the seed bank is attributed to a large proportion of the species Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv., which are seed profusive and whose seeds have a significant viability in the ground. The high density, biomass, species richness, species diversity, and uniformity of the reclaimed site are related to the sufficiency of heat and water supplies for species establishment and growth in the site, which partly reflects the effective efforts for hillslope grassland restoration. It is believed that the efforts for vegetation restoration have altered the microhabitat conditions of the site and have provided a favorable habitat for species to establish and grow.  相似文献   

19.
The soil seed bank is considered as an important component for resilience of climacic vegetation. Whereas several related studies have been conducted in Asian, American and some African tropical forests, no investigation has ever been conducted in Central African rainforests, especially in logged forests where the soil seed bank could contribute to regeneration of timber of trees species. We studied the soil seed bank characteristics in relation to the standing vegetation in three Cameroonian forest zones with different disturbance regimes. There was no significant difference between sites in terms of density of the seed bank; the average mean density was 87.6 seeds m−2. But dissimilarities of the floristic compositions between sites were quite high. Overall, seeds came from 43 species including three commercial tree species. Whereas the seedlings emerging from soil samples mostly came from weedy and short-lived pioneer species, climax species predominated in the extant vegetation, leading to a very weak similarity between soil seed flora and the surrounding vegetation: Sorensen's index ranged from 3.5 to 7.6%. Canopy openness could significantly affect the species richness of soil seed stocks but not the seed density. These results show that the soil seed bank contribution to the resilience of mature tropical forests is low. In particular, very few timber tree species could benefit from soil seed stocks for their regeneration. Therefore, the development of enrichment techniques including use of the soil seed bank as a source of tree regeneration in such a context would be irrelevant.  相似文献   

20.
The effects of dry heat, wet heat, charred wood and smoke on the germination of dormant soil‐stored seeds from a Eucalyptus woodland in western Victoria were tested by using a glasshouse seed‐bank germination experiment. Seedling density, species richness and species composition were compared between replicated treated and control samples. A total of 5922 seedlings, comprising 59 plant species, was recorded from the soil samples over a period of 150 days. While a few species dominated (including Centrolepis strigosa, Wahlenbergia gracilenta and Ixodia achillaeoides), 26 species were represented by fewer than five seedlings and 18 species were restricted to single treatment types. With the exception of charred wood, all treatments led to a significant increase in seed germination relative to the control. The highest number of germinants was obtained for the smoke treatment, with a mean (± SE) of 12 547 ± 449 seedlings m–2. Heat treatments yielded intermediate densities, with means (± SE) varying between 7445 ± 234 and 9133 ± 445 seedlings m–2. In comparison with the estimates of seed‐bank sizes from other fire‐prone ecosystems, these densities are high. Species richness differed significantly among treatments. Highest mean richness was recorded in the smoke treatment and lowest for the control and charred wood treatments. There were significant differences in seed‐bank species composition between treatment types based on analysis of similarity (Anosim) using Bray–Curtis similarity. While heat was a specific requirement for triggering germination in hard‐seeded species (e.g. Fabaceae), smoke was the most effective trigger for species from a broad range of other families. The potentially confounding effect of physical and chemical mechanisms of germination stimulation in heated bulk soil samples is raised as an issue requiring further investigation in relation to the role of smoke as a germination trigger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号