首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

2.
Thirty years after selective timber harvest in the Kibale National Park, Uganda, many abandoned logging gaps are dominated by Acanthus pubescens, and show little forest recovery. To examine if this arrested successional state was caused by limited tree seedling growth and survival, we planted seedlings of four forest tree species (Albizia grandibracteata, Mimusops bagshawei, Prunus africana and Uvariopsis congensis) in A. pubescens‐dominated logging gaps and in control areas of adjacent forest. To assess if clearing A. pubescens facilitates forest regeneration, we planted seedlings of two species (A. grandibracteata and U. congensis) in small clearings cut within the logging gaps. We examined mortality, growth, herbivory and site characteristics among the treatments. Finally, we described the physical attributes of the A. pubescens‐dominated gaps. Seedlings of all the four species survived and grew equally well in A. pubescens and forest treatments, and most site characteristics were also similar. Seedlings planted in clearings grew more than in either forest or A. pubescens sites. Very few established trees were found in A. pubescens sites, and most of these were near the forest edges. We also discussed the role of elephants (Loxodonta africana) and collapsing A. pubescens canopies in the maintenance of an arrested successional state in these logging gaps.  相似文献   

3.
Mycorrhizal fungi were sampled in a deciduous tropical forest on the Pacific coast of Mexico during different seasons and in natural treefall gaps and pastures. All 12 plant species sampled in the forest were arbuscular mycorrhizal. The percent root infection and spore production were closely related to the phenology of the plants. Most tree species and all herbaceous species had the highest infection in the summer rainy season, but two species, Opuntia excelsa and Jacquinia pungens, had highest infection in the dry season. Unusually high rainfall during the dry season was associated with increased infection but not increased spore production. Spore density was low for all species at all sample times, except at the beginning of the July 1993 rainy season in, when we observed up to 28 spores/g soil. The percent cover of shrubs or herbs did not increase in gaps after two years, and we observed no colonizing seedlings. No plant species with cover higher than 2.7 percent occurred exclusively in gaps or forest. The percent mycorrhizal infection did not differ significantly between gaps and forest. Spore counts were as high in the gaps as in the forest in two of the three gaps but lower in the third gap. The lack of significant response of plants in these gaps after two years differed from the rapid response in tropical rainforests. It is likely related to the small size of the gaps and to light infiltration to the forest floor. Pastures were dominated by two species of exotic grasses and one species of mycorrhizal fungus, whereas forests had 15 fungal species. The slow regrowth of vegetation in gaps was not limited by mycorrhizal fungi, since they were still abundant after the treefalls, but recovery in pastures could be affected by low fungal diversity and dominance of grasses.  相似文献   

4.
We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.  相似文献   

5.
The effects of Sika deer (Cervus nippon) browsing on the regeneration of pioneer species were studied in relation to canopy gaps in a warm temperate evergreen oak forest in Kasugayama, Nara City. Four study sites, three in canopy gaps and one under a closed canopy, were selected and each divided into fenced and unfenced plots. Under the closed canopy, seedlings of all the pioneer species died irrespective of browsing pressure. However, in the canopy gap sites, seedlings of the pioneer species could establish and grow well. The seedling survival ratio in the fenced plots in the canopy gaps was >60% 1 year after germination. However, in the unfenced plots, only <20% of the seedlings survived 1 year, with all dying within 3 years after germination. Thus, the regeneration of pioneer trees in this forest was strongly inhibited by deer browsing. Successful regeneration of a pioneer,Zanthoxylum ailanthoides, occurred for several years even after two major wind disturbances during the past 90 years. This may be due to less browsing pressure from the deer.  相似文献   

6.
Shimizu M  Ishida A  Hogetsu T 《Oecologia》2005,143(2):189-197
We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lpr) decreased. Lpr was sensitive to brief treatments with HgCl2 (a specific inhibitor of aquaporins). This allows Lpr to be divided into two components: cell-to-cell and apoplastic pathways. The Lpr of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lpr. Physiologically, pioneer species showed larger decreases in Lpr and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.  相似文献   

7.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

8.
Question: Is tree regeneration in canopy gaps characterized by chance or predictable establishment. Location: Coastal scarp forests, Umzimvubu district, Eastern Cape Province, South Africa. Methods: Estimation of richness of gap‐filling species across canopy gaps of different size. Data are compared with regeneration under the canopy. Probability of self‐replacement of gap forming species is calculated. Results: Forest area under natural gap phase was 7.8%, caused mostly by windthrow (54%). The abundance and average size of gaps (87.8 m2) suggests that species diversity may be maintained by gap dynamics. However, only four of 53 gap‐filler species displayed gap size specialization and these were pioneer species. An additional 13 species were more common in larger gaps but there was no gradient in composition of gap‐filler species across gap size (p= 0.61). Probabilities of self‐replacement in a gap were low (< 0.3) and common canopy species were equally abundant in gaps and the understorey. Species composition in gaps showed no pattern of variation, i.e. was unpredictable, which suggests absence of a successional sequence within tree‐fall gaps. There was also only a slight increase in species richness in gaps at intermediate levels of disturbance. Conclusions: Coastal scarp forest appears not to comprise tightly co‐evolved, niche‐differentiated tree species. Unpredictable species composition in gaps may be a chance effect of recruitment limitation of species from the species pool. Chance establishment slows competitive exclusion and may maintain tree diversity in these forests. These data suggest that current levels (≤ 3 gaps per ha) of selective tree harvesting may not cause a reduction in species richness in this forest.  相似文献   

9.
Root development in simple and complex tropical successional ecosystems   总被引:8,自引:0,他引:8  
Fine and coarse root mass and fine root surface area were studied during 5 yr following the felling and burning of a tropical forest near Turrialba, Costa Rica. Five experimental ecosystems were established: 1) natural successional vegetation, 2) successional vegetation enriched by seed applications, 3) imitation of succession (built by substituting investigator-selected species for natural colonizers), 4) monocultures (two maize crops followed by cassava andCordia alliodora), and 5) a bare plot. Fine roots grew rapidly in all treatments during the first 15 wk, at which time there were 75 gm−2 in the monoculture and 140 gm−2 in the enriched and natural successions. Subsequent growth was slower, and fine-root mass decreased during the first dry season. After 5 yr coarse root mass to a depth of 85 cm was about 800, 1370, and 1530 gm−2 in the succession, enriched succession and imitation of succession, respectively. At the final harvest, the 3.5 yr-oldC. alliodora plantation had 1000 g m−2 of coarse-root biomass. Roots <1 mm in diameter were concentrated in the upper 5 cm of soil and accounted for most fine-root surface area. Total fine-root surface area was greatest in the enriched successional vegetation and usually lowest in the monoculture.  相似文献   

10.
Ecuadorian mountain rainforests are declining dramatically due to deforestation. Exploitation of remaining forests has led to low abundances of native, valuable timber species. Enrichment planting of selected native tree species into forest gaps is a strategy that may increase their abundance and maintain biodiversity. However, the development of successful planting strategies requires knowledge of environmental demands on, and ecological requirements of, native species during their establishment. This knowledge is currently lacking for mid- and late-successional species in Central American forests. Two deciduous, mid-successional (Cedrela montana, Tabebuia chrysantha) and two evergreen, late-successional native tree species (Nectandra membranacea, Podocarpus sprucei) were planted into felling gaps. Photosynthetic performance and growth in height of these species were assessed along light gradients during seedling establishment to test whether species-specific light responses were related to plant successional traits. Both mid-successional species benefited from higher light levels in gaps up to 30% canopy openness60°. In larger gaps, C. montana exhibited a significant decline in growth. As expected, growth of the late-successional species was only marginally increased at higher light levels. Nevertheless, the photosynthetic apparatus of N. membranacea displayed rapid acclimation to higher light conditions in gaps. Plant response to felling gaps may not always be predicted based on successional status. Our results suggest that the four investigated species may coexist in the same gap by occupying different niches along light gradients. This arrangement may offer an ecological basis to increase the abundance of valuable timber species through enrichment planting in Ecuador mountain rainforests.  相似文献   

11.
In balsam fir (Abies balsamea)-dominated boreal forests of Gros Morne National Park, Newfoundland (Canada), non-native Cirsium arvense (Canada thistle) has invaded forest gaps. Its management is complicated by the lack of viable control techniques and an overarching issue of gap regeneration failure attributed to browsing by non-native moose (Alces alces). This study identifies the impacts of thistle invasion on balsam fir regeneration and explores protocols to re-establish fir in gaps invaded by thistle and moose. Fir seeds were planted into ten gaps (five natural; five anthropogenic) and the emergence, growth, herbivory damage, and survival of fir was determined for 2 years amongst five treatments (n = 50 plots; 32 seeds/plot): (1) thistle monocultures in gaps; (2) where aboveground thistle biomass was removed; (3) where above- and below-ground thistle biomass was removed; (4) non-invaded areas in gaps; and, (5) adjacent uninvaded forest edges. In addition, 432 fir seedlings (aged 15 months) were transplanted into four forest gaps within the above treatments and followed for 1 year. Results indicate that invasion of C. arvense negatively affects fir emergence and early survival, and may further contribute to continued balsam fir regeneration failure independent of future moose densities. However, older fir seedlings transplanted into thistle monocultures experienced a positive facilitative effect due to the protection thistle provided against small mammal herbivory. Restoration actions that combine moose density reductions with the planting of fir seedlings offers the most viable long-term strategy to re-establish the native forest canopy in thistle-invaded gaps and would likely lead to the eventual decline of shade-intolerant C. arvense.  相似文献   

12.
Low‐light environments in early‐successional forests that have established after abandonment of farming often restrict the establishment of later successional species resulting in an arrested succession. This 6‐year study tested the potential of different canopy manipulations to facilitate the establishment of a light‐demanding canopy tree species, tōtara (Podocarpus totara), within a regenerating kānuka (Kunzea robusta) stand. Results highlighted the effectiveness of artificial gaps over other methods (ring‐barking and edge‐planting) in accelerating the growth of planted tōtara. Seedlings under gaps grew consistently taller and faster over time indicative of an improved understorey light environment. Ring‐barking did not have a significant effect on tōtara growth because only a portion of the treated trees died, and after 6 years dead trees remained standing with intact branches resulting in insignificant increases in light transmission. At the forest edge sites, tōtara growth was highly variable. Although some seedlings grew as tall as in the gaps, others did not. Survival was also lower in the edge sites than in other treatments, which was likely due to enhanced herbivory from ungulates which impacted some plants at these sites. Gap creation is likely to be an important tool for restoring late‐successional canopy species in regenerating stands both through providing ideal sites for the growth of light‐demanding species such as tōtara and through natural establishment of other future canopy trees into the gaps.  相似文献   

13.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

14.
Abstract. Many theories of forest succession imply that terrestrial plant community composition within a region tends to converge toward a climax community. That is, given similar climatic and edaphic conditions, succession at different sites within an area will lead to comparable species compositions, a pattern referred to as successional convergence. In this study, we examine changes in plant composition within forest canopy gaps over a 17-yr period to identify potential patterns of successional convergence and to ascertain the factors controlling the successional pathway. To do so, we: (1) sampled 36 forest canopy gaps in Hueston Woods Nature Preserve in 1977, 1981, 1985, 1989 and 1993, (2) evaluated changes in the similarity of gap composition over this period, and (3) examined gap composition in each year as a function of variables describing gap habitat, seed source proximity, and disturbance history. Results indicated an initial pattern of successional divergence, with gaps exhibiting increased dissimilarity over the first 10–12 years of succession. We attribute this initial period of divergence to the effects of differential seed inputs from edge individuals and heterogeneity of available light due to differences in gap size. Recent surveys, however, indicated that gap composition has become more similar as competition within gaps has become more intense. In these samples, gap composition is closely linked to site conditions, including slope, soil conditions, and site exposure. Finally, while these patterns may suggest equilibrium-oriented dynamics, non-equilibrium processes such as repeat disturbances are also evident at Hueston Woods and will likely play an important role in determining future successional pathways.  相似文献   

15.
Seed samples of 50 rainforest species representative of all successional stages from tropical lowland forests in north-eastern Australia were buried in nylon material bags under rainforest for periods up to 2 years. The seed samples were exhumed after 6 weeks, 6 months, 1 year and 2 years, and their viabilities assessed. Substantial portions of the samples of 31 species of pioneer and early and late secondary species retained viability for 2 years in the buried samples, and germinated immediately they were exposed to greenhouse conditions. In approximately one-third of these species, the dormancy was completely enforced by the burial conditions since fresh, mature seed germinated immediately in the greenhouse. The remainder of the long-lived seeds showed some evidence of variable initial periods of innate dormancy produced by their hard, impermeable coats. There was no indication that the burial conditions enforced or induced any dormancy in the seeds of primary forest trees. The mean viability of the primary forest seeds examined was 10% after 6 months burial. The soft-coated seeds were obligate immediate germinators; they germinated or died. The remainder showed variably delayed germination, and this was interpreted as a mechanical dormancy produced by their leathery, fibrous, or stony endocarps. The group of late secondary species sampled contained both obligate immediate germinators and seeds with well developed dormancy mechanisms. Many of the buried 'seedlings’ of primary forest species remained alive for a year or more attached to seeds, demonstrating the ability of the larger primary seeds to sustain seedlings under conditions adverse to photosynthesis and growth. Some seedlings of Castanospermum australe were alive and were transplanted successfully after 2 years burial. This enables primary forest species to stock seedlings on the forest floor in contrast to the secondary species which store seed in the soil.  相似文献   

16.
The study was carried out in 16 gaps produced by bamboo clump death (Merostachys riedeliana Rupr. ex Doell) in a semideciduous mesophytic forest in the Santa Genebra County Reserve (22°4945 S and 47°0633 W), Campinas, SP, south-eastern Brazil. All shrub and tree individuals in the gap with height 0.50 m were sampled. The floristic similarity among the colonizing vegetation in these gaps and in gaps produced by treefall was assessed by the Jaccard similarity index and cluster analysis. The colonization process of these gaps was found to be similar to that in gaps formed by treefall, but this colonization only began after the bamboo clump death. The gap area varied from 35 m2 to 454 m2, but small gaps predominated. In the set of gaps, 3677 individuals were sampled belonging to 40 families, 83 genera and 114 species. The families with the greatest species richness in the gaps were Myrtaceae (10), Euphorbiaceae (9) and Solanaceae and Rubiaceae (8 each). The species with the greatest number of individuals in the gaps were the pioneers Celis tala Gillies ex Planchon and Croton priscus Muell. Arg. and the shade-tolerant shrubs Actinostemon klotschii (Muell. Arg.) Pax, Polygala klotzschii Chod., Psychotria hastisepala Muell. Arg. and Galipea multiflora Engl. Late secondary species predominated because of the greater number of small gaps. The gaps formed by bamboo clump death contributed to the successional and structural organization of the forest, creating suitable environments for colonization by shrub and tree species of the different successional groups.  相似文献   

17.
采用典型样地法,以川西周公山柳杉人工林5种不同大小的林窗为研究对象,以林下非林窗为对照,研究了不同大小的林窗对柳杉人工林物种多样性的影响,同时分析了不同梯度林窗下林窗中心、林窗边缘、及林下群落的物种组成、物种多样性的变化情况。结果表明:(1)在所调查的18个样地231个样方中共记录到维管束植物141种,隶属于76科113属;随着林窗面积的增大,群落各层次的物种数呈现出先升高后降低的趋势,灌木层物种数在各林窗梯度上表现为林缘林下林窗中心,草本层物种数在各林窗梯度上表现为林缘林窗中心林下。(2)不同林窗优势种及其重要值不同,即在小林窗内,优势种为柳杉和野桐,其重要值之和高达0.292 3;在大林窗内,杉木及亮叶桦为群落优势物种,群落内出现大量其更新幼苗。(3)不同大小的林窗表现为灌木层物种丰富度指数(D)、Shannon-Wienner指数(H)、和Pielou均匀度指数(Jsw)值在400~450 m2面积的大林窗内达到一个均优水平,草本层物种的多样性在面积为100~150m2的小林窗内达到较高水平;不同梯度的林窗各层次群落D、H值整体表现为林缘林窗中心林下。研究认为:林窗的存在会改变群落物种组成,提高群落物种多样性水平,并且大林窗(400~450m2)更利于柳杉人工林林下树种更新及物种多样性的提高。  相似文献   

18.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

19.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

20.
马尾松作为中国广泛栽植的乡土树种,其人工林群落结构简单和生物多样性低下是普遍存在的生态学问题。探究不同林窗尺度对马尾松人工林林下植被群落的影响,可为马尾松人工林近自然经营提供理论依据。该研究在45 a生马尾松人工林中分别设置A(50 m^(2))、B(100 m^(2))、C(200 m^(2))和D(667 m^(2))4种不同尺度的林窗,以不做任何处理的马尾松人工林作为对照(CK),探究采伐开窗后林窗内自然更新1 a后的灌草层植物组成、优势种生态位宽度和生态位重叠度分布特征。结果显示:(1)除100 m^(2)林窗下灌木层物种数与对照无显著差异外,其余林窗灌草层物种数均显著高于对照(P<0.05),且200 m^(2)林窗下灌草层物种数均最多,分别为35种和20种;4种林窗下灌草层物种丰富度指数较对照均显著增加(P<0.05),最大值均出现在200 m^(2)林窗下,其值分别为对照的1.5倍和2.6倍。(2)林窗增加了灌草层喜光植物种类,且在200 m^(2)林窗下种类最多,灌木层喜光植物有13种,草本层喜光植物有5种。(3)4种林窗下灌草层优势种中,喜光植物生态位宽度均较大,200 m^(2)林窗下灌草层生态位宽度平均值最小,其对资源利用程度低,重要值与生态位宽度之间无显著相关性(P>0.05)。(4)4种林窗下灌草层优势种间生态位重叠度指数均较小。667 m^(2)林窗下,灌草层优势种平均生态位重叠度指数最小,分别为0.029和0.024,200 m^(2)林窗下灌草层优势种高生态位重叠度占总数比例最大,分别为20%和23.8%。研究表明,采伐开窗促进了马尾松人工林林下植被发育,丰富了林下植物多样性,有利于马尾松林稳定持续发展,对精准提升马尾松人工林质量具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号