首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Nitrogen, phosphorus and potassium were supplied to some Belgian fens of varying nutrient status and productivity. Plant growth in the lowest productive fen with a species-rich Caricion davallianae vegetation was strongly P-limited. N was ineffective when applied alone, but increased the effect of P-addition when applied together. Summer biomass and plant nutrient concentrations were monitored for four years, and showed partial recovery of nutrient limitation. In a more productive fen dominated by Carex lasiocarpa and in a fen meadow, nutrient limitation was less strong. N limited growth in the productive fen, and N and K were co-limiting in the fen meadow. The P-concentration in the productive fen vegetation showed a marked increase after P-fertilization, but it did not result in higher standing crop. The significance of P-limitation for the conservation of species rich low productive fens is discussed. P-limitation may be an essential feature in the conservation of low productive rich fens: because it is less mobile in the landscape than N and/or because it is an intrinsic property of this vegetation type. Plant nutrient concentrations and N:P-ratios may be used as an indication for the presence and type of nutrient limitation in the vegetation. We found N:P-ratios of 23 to 31 for a P-limited site and 8 to 15 in N-limited sites. This was in agreement with critical values from the literature: N:P > ca. 20 for P-limitation and N:P < 14 for N-limitation. Thus, this technique appears valid in the vegetation types that were studied here.  相似文献   

2.
Abstract. Fen meadows (Cirsio dissecti‐Molinietum) are seriously threatened by desiccation, acidification and eutro‐phication. In The Netherlands several projects were launched to restore damaged fen meadows. This review describes how successes and failures of these restoration projects depend on hydrological systems. Six hydrological systems have been distinguished, which all provide the site conditions required by this community. Nowadays, the best developed fen meadows are found in the higher Pleistocene landscape of The Netherlands, where they depend on base‐rich groundwater discharging from local or large groundwater systems. Fen meadows of the lower Holocene landscape usually occur in man‐made surface water systems. Almost all stands have been severely deteriorated. Restoration of fen meadows in the Pleistocene landscape is promising when the hydrology is only slightly disturbed or when hydrological measures are taken in combination with sod cutting. Restoration prospects of fen meadows in the Holocene landscape are low. Until now a complete regeneration of Cirsio‐Molinietum meadows has not been realized. Restoration measures failed to restore high pH values in the top soil. It is hypothesized that viable seeds of many target species lack in the soil seed bank. In addition, the dispersal capacities of these species seem to be limited.  相似文献   

3.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species.  相似文献   

4.
Abstract. Plant species-rich Calthion meadows on mesotrophic fen peat soil extensively cut for hay are among the endangered semi-natural vegetation types in northwestern Europe. They are often badly affected by lowering the groundwater table (drainage) and fertilization. In a comparative study of an undrained site with a Calthion meadow and an adjacent drained site, availability of N, P and K was biologically assessed under field conditions (for two years) as well as in a greenhouse (for 18 weeks) by measuring shoot responsiveness. Also, experimental wetting of intact turf samples taken from both sites was applied in order to study the interaction between nutrient supply and anaerobic soil conditions. It was concluded that the above-ground phytomass yield in the undrained site was restricted by a major shortage of N-supply and a moderate shortage of K-supply by the fen peat soil. The above-ground phytomass yield of the drained site was only reduced by a strongly limited supply of K by the soil. The extent of K-deficiency was larger for the drained site. No P-deficiency was observed in any of the drained or undrained sites. Rewetting turf samples, taken from the drained site, did not change above-ground phytomass yields, suggesting that nutrient supplies were not affected by rewetting. Leaching has likely resulted in a strong reduction of K-supply in the drained site. It is assumed that a shortage in K-supply from the peat soil may have become an important environmental constraint for characteristic plant species of Calthion meadows. This may hamper the development of this meadow type on drained peat soils after rewetting by groundwater discharge.  相似文献   

5.
Abstract. The soil seed bank composition was determined at four sites in the dune slack ‘Koegelwieck’ on the Dutch Wadden Sea island of Terschelling. At three different sites in the slack, where sod-cutting experiments down to the mineral sand had been carried out, the established vegetation and seed bank were assessed after 5, 9 and 39 yr of undisturbed development, respectively. In addition, a fourth site in the slack was investigated, where vegetation development had proceeded for 80 yr since plant colonization of bare soil and where nowadays a vegetation dominated by Calamagrostis epigejos and Salix repens occurs. Together these four sites can be regarded as a chronosequence of dune slack formation. Clear time sequences were detected in the seed bank data. Many late successional species showed a significant increase in the number of seeds during the succession. Some of the early successional basiphilous pioneer species such as Anagallis minima, Centaurium littorale, Littorella uniflora, Radiola linoides and Samolus valerandi, showed either a decrease during the time of succession or an optimum in the vegetation while remaining present in the seed bank in low but detectable numbers. They could, therefore, play a role in re-establishment of the vegetation after sod-cutting. One of the target species, Schoenus nigricans, established within a few years after removal of the sod. However, no seeds of this species have been detected in the soil below either of the successional stages. Based on the species disappearance from the established vegetation and based on the independent data of Thompson et al. (1997) an estimation of seed longevity could be made for several Red List species of wet dune slacks.  相似文献   

6.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

7.
Availability of seeds and provision of “safe sites” for seedling recruitment are essential for successful restoration of seminatural grassland communities. Inability to provide species‐specific conditions for seedling recruitment appears to be a major factor limiting establishment of fen‐meadow species on restoration sites. This contention was tested in the field for both germination and establishment conditions for a selection of fen‐meadow species. A Cirsio‐Molinietum fen meadow and an agriculturally semi‐improved species‐poor grass dominated rush pasture were used. Seeds of Carex ovalis, Cirsium dissectum, Molinia caerulea, Succisa pratensis, and Holcus lanatus were sown onto treatments comprising either irrigation or no irrigation, presence or absence of existing vegetation canopy, and presence or absence of soil disturbance. Germination of all except H. lanatus was higher in the fen meadow than in the rush pasture. The fen‐meadow site was less susceptible to drought, provided more light to the seed environment, and showed a stronger day–night variation in relative humidity compared with the rush pasture. All the fen‐meadow species responded strongly to the experimental treatments, whereas H. lanatus showed only a small response. Soil disturbance was the major factor that increased germination. Removal of the vegetation canopy improved germination only in S. pratensis. Conditions affecting survival of seedlings were different from those affecting seed germination. Seedling survival was greater on the fen‐meadow site than on the rush pasture. Canopy presence was the major factor that reduced seedling survival. Few seedlings survived in the presence of the rush pasture canopy. Irrigation and soil disturbance were of minor importance for seedling survival on both sites. Safe sites for seed germination and seedling establishment of fen‐meadow species existed on the fen meadow even without soil disturbance and gap creation. Safe sites for seedling recruitment were not present in the rush pasture. The need for species‐specific definition of safe site characteristics at the two stages of seedling recruitment (i.e., for seed germination and for seedling survival) was demonstrated. The implications of these findings for restoration of seminatural grasslands are discussed.  相似文献   

8.
Question: Can the seed bank play a significant role in the restoration of plant communities of dry acidic dune grassland where fire has destroyed Ulex europaeus scrub? Location: Northern French Atlantic coast. Methods: One year after the fire, the seed bank and vegetation were sampled in 1 m × 1 m plots along three transects from the oldest scrub vegetation towards the grassland. Differences in species richness, seed density and contribution of ecological groups in the seed bank and vegetation along the transects were analysed. Results: Seed density and species richness in the seed bank decreased significantly from the grassland towards the centre of the scrub vegetation; 50% of the seed bank consisted of core species of the target plant community, such as Carex arenaria, Aira praecox, Rumex acetosella and Agrostis capillaris. Seeds of these species were also found in the deeper soil layers beneath the oldest scrub vegetation, indicating that they can be considered to be long‐term persistent. Beneath the youngest scrub vegetation, seeds of rare satellite target species also occurred. However, no target species were established on the burned site after one year, resulting in a large discrepancy between seed bank and vegetation. Conclusions: Although the seeds present in the soil indicate that restoration of the acidic grassland based on the seed bank is possible, additional management actions such as mowing and soil disturbance may be necessary to restrict resprouting of Ulex and to stimulate the germination of seeds of target species in the deeper soil layers.  相似文献   

9.
Question: What is the contribution of a rise in groundwater level to vegetation restoration of degraded peat meadows compared to abandonment only? Location: Abandoned peat meadows in the central part of The Netherlands. Methods: Comparison of species composition and species abundance of vegetation and seed banks of reference and rewetted peat meadows, using plant trait and seed bank analysis. Results: Vegetation of rewetted meadows shared on average only 27% of their species with the reference meadow, while this was 50% on average for species in the seed bank. Rewetted meadows had a lower total number of species and a lower number of wet grassland and fen species present in the vegetation, but had higher species richness per m2, although evenness was not affected. Rewetting increased the dominance of species of fertile and near neutral habitats, but did not result in an increase of species of wet or waterlogged habitats. Re-wetted meadows were dominated by species relying mainly on vegetative reproduction and species with a low average seed longevity compared to the reference meadow. Conclusion: Rewetting was not effective as a restoration measure to increase plant species diversity or the number of wet grassland and fen species in the vegetation. If no additional restoration management is applied, the seed bank will be depleted of seeds of species of wet grassland or fen habitats, further reducing the chances of successful vegetation restoration.  相似文献   

10.
Most species‐rich fen meadows in nature reserves in The Netherlands are acidified due to weaker upwelling of base‐rich groundwater. The present study investigated whether and why turf stripping combined with superficial drainage might promote the long‐term recovery of such meadows and restore the nutrient‐poor, buffered conditions they require. In a field experiment, we analyzed changes in vegetation composition, soil parameters, and soil water chemistry in stripped plots of degraded Cirsio‐Molinietum vegetation over 12 years. After the first five years, many species from the target communities occurred in stripped plots. Both vegetation and soil data showed positive effects of turf stripping on the acid‐buffering capacity. Because sulfate concentration in the soil water decreased over time, whereas the bicarbonate concentration increased, we inferred that there was internal alkalinization driven by sulfate reduction in low‐lying stripped plots. However, the succession toward more acidophilus plant communities, in both control and stripped plots, indicated gradual acidification. This may be caused by a continuing weakening of the upward seepage of base‐rich groundwater as shown by declining calcium concentrations in the soil water. Though turf stripping exposed a nutrient‐poor soil layer with a greater acid‐buffering capacity, these positive effects might not be sufficient to combat the ongoing acidification in the long term.  相似文献   

11.
Abstract. The effects of disturbance by trampling and vegetation removal on herbaceous communities and their micro-environments were examined at two sites with different levels of shade. The dominant species of the original vegetation were the perennial herb Artemisia princeps at the sunny site and the dwarf-bamboo Pleioblastus chino at the shady site. With no disturbance and marked dominance of these species, diversity was low. After vegetation removal there was a rapid recovery, leading to a more diverse vegetation with many more species, each with a lower dominance. Continuous trampling induced a short vegetation while the light intensity under the foliage was increased. At the sunny site, species richness was depressed by trampling because the soil water potential decreased markedly during summer and only the stress-tolerant annual Digitaria adscendens grew vigorously. Thus, the lowest species diversity was observed in the heavily trampled vegetation in late summer. At the shady site, soil water availability was not affected by trampling. This allowed the survival of many species and prevented a strong decline in diversity. The results suggest that the pattern of change in diversity in communities subjected to various disturbances, was always determined by the original environments.  相似文献   

12.
The objective of this study was to identify soil nutrient availability conditions that would allow the establishment of key species of the Molinia caerulea‐Cirsium dissectum fen meadow. The restoration site was a species‐poor agriculturally improved pasture that had received no inorganic fertilizer for greater than 13 years. Treatments designed to reduce site fertility included: cutting and removal of herbage, cultivation, fallowing and topsoil removal. Straw and/or lignitic‐clay were incorporated as soil amendment treatments. Cirsio‐Molinietum species were either sown or planted as seedlings on treated plots. Neither soil nitrogen nor potassium availability, per se, appeared to limit the establishment of Cirsio‐Molinietum species, whereas enhanced phosphorus availability did. Removal of the top 15–20 cm of soil reduced the total soil phosphorus amount by about 85 percent and depleted plant P availability. Nutrient‐poor and relatively calcium‐enriched soil exposed by topsoil removal allowed the development of a community with affinities to the Cirsio‐Molinietum typical fen meadow. Redundancy analysis indicated the existence of marked vegetational gradients within the topsoil removal treatments that were influenced by the straw and the lignitic‐clay amendments. The way in which these two amendments influenced edaphic conditions were unclear. Where the topsoil was not removed the vegetation became dominated by a few competitive species and although many of the planted Cirsio‐Molinietum species were still present after four years, they were found only in trace amounts. Removal of most of the soil organic matter was a practical success in that it created suitable edaphic conditions for all the planted Cirsio‐Molinietum species to remain well established.  相似文献   

13.
Abstract. The germinable soil seed bank is described from a coastal barrier island off the northwest coast of Florida, USA. Soil samples collected from seven vegetation types, recently deposited dredge spoil and unvegetated areas in autumn 1990 and spring 1991 were placed out in greenhouse trays. 110 taxa germinated from the samples with the largest number (41) being C3 perennial dicots. The largest number of taxa germinated from dry (57) and wet (54) swales, the fewest (one species: Heterotheca subaxillaris) from strand. Similarity of seed bank densities to above-ground species cover was low (Jaccard's Index = 0.36), not different between vegetation types, but higher in the autumn than in the following spring. Compositional gradients in the seed bank and above-ground vegetation determined using DCA ordination were highly correlated and related to distance from mean high water, and plot elevation. At the landscape scale, the seed bank provided an equally clear delineation of vegetation types to that based upon the above-ground vegetation. The seed bank of low disturbance, late-succession vegetation types (wooded dunes, swales, marshes) was well developed (high species richness, emergent density, and percentage annual species) with the exception that the large-seeded woody species (i.e. Quercus spp.) were absent from the wooded dune seed bank. By contrast, a poorly developed and transient seed bank occurred in more frequently disturbed (extensive sand movement, salt spray), early successional dredge spoil, unvegetated areas and strand. These contrasts support a general pattern of increasing seed bank development and a persistent rather than transient seed bank with decreasing disturbance frequency, increasing time since disturbance and successional maturity.  相似文献   

14.
Question: Which restoration measures (reintroduction techniques, reintroduction timing and fertilization) best enable the establishment of fen species on North American cut‐away peatlands? Location: Rivière‐du‐Loup peatland, southern Québec, Canada. Methods: In total, eight treatments which tested a combination of two reintroduction techniques, two reintroduction timings and the use of phosphorus fertilization were tested in a field experiment within a completely randomized block design. Results: Sphagnum transfer, a reintroduction technique commonly used for bog restoration in North America, was effective for establishing Sphagnum and Carex species. The hay transfer method, commonly used for fen restoration in Europe, was much less successful, probably due to questionable viability of reintroduced seeds. The treatments which included light phosphorus fertilization, had a higher Carex cover after three growing seasons. The timing of the reintroductions had no impact on the success of vegetation establishment. However, vegetation reintroduction should be carried out in the spring while the ground is still frozen to minimize other ecological impacts. Conclusions: The success of the diaspore reintroduction technique on small‐scale units indicates that a large‐scale restoration of fens using this technique is feasible.  相似文献   

15.
16.
The majority of fens in Europe have been transformed for agricultural purposes and have disappeared or become degraded. Fen meadows that developed under low-intensity management of fens also have become degraded. In this paper, we consider the available restoration methods, biotic constraints for restoration and new prospects and approaches for the restoration of severely degraded fens. Due to irreversible changes in landscape settings, hydrology, soil and trophic conditions, a full restoration to natural mires is unlikely. Yet, an improvement of the ecosystem functions and revival of biodiversity in degraded fens is possible. A restoration of semi-natural meadows is one of the alternative targets. Important for restoration efforts to succeed are a sufficient reduction of nutrient levels and preventing acidification. In general, a combination of topsoil removal and seed transfer is an effective measure for fen meadow restoration, provided that groundwater seepage can be re-established. There are also several biotic limitations to fen meadow restoration, due to limited propagule availability of target species and the legacy of the former vegetation in form of its soil seed bank and high seed production by unwanted species. Under the present environmental conditions, the re-development of fen meadows on degraded fens will result in species compositions different from those observed in the past and such restoration may require considerable time and effort.  相似文献   

17.
Abstract. We tested whether rewetting improved environmental conditions during peatland restoration and promoted colonization and development of mire vegetation. Vegetation change was monitored in a cut‐away peatland one year before, and four years after, rewetting. Colonizers before rewetting were perennials, mostly typical of hummocks or bare peat surfaces. The main variation in vegetation was related to variation in the amounts of major nutrients and water table level. The wettest site with the highest nutrient level had the highest total vegetation cover and diversity, as well as some species typical of wet minerotrophic mires. Raising the water table level above, or close to, the soil surface promoted development of wet minerotrophic vegetation. Diversity initially decreased because of the disappearance of hummock vegetation but started to recover in the third year. Eriophorum vaginatum and Carex rostrata were both favoured, and bryophytes typical of wet habitats colonized the site. Moderate rewetting promoted the development of Eriophorum vaginatum seedlings and an increase in the cover of tussocks. Bryophytes typical of disturbed peat surfaces spread. In the control site development continued slowly towards closed hummock vegetation. The study showed that raising the water level to, or above, soil surface promotes conditions wet enough for a rapid succession towards closed mire vegetation.  相似文献   

18.
Abstract. For seven years we studied the recovery of vegetation in a Belgian P limited rich fen (Caricion davallianae), which had been fertilized with nitrogen (200 g.m?2) and phosphorus (50 g.m?2) in 1992. The vegetation in this fen has low above‐ground biomass production (< 100 g m?2) due to the strong P limitation. Above‐ground biomass was harvested from 1992 to 1998 and P and N concentrations measured. In 1998, below‐ground biomass was also harvested. The response to fertilization differed markedly between below‐ and above‐ground compartments. Above‐ground, P was the single most important factor that continued to stimulate growth 7 yr after fertilization. Below‐ground, N tended to decrease live root biomass and increase dead root biomass and seemed to have a toxic effect on the roots. In the combined NP treatment the stimulating effect of P (an increase of live root biomass) was countered by N. The 1998 soil analysis showed no difference in soil P in the plots. Thus, Fe hydroxides are not capable of retaining P in competition with fen vegetation uptake. However, higher capture of P in root Fe coatings from N plots may partially explain this negative N effect. The results suggest that N root toxicity will be amplified in strongly P limited habitats but that its persistence will be less influenced by P availability. This mechanism may be a competitive advantage for N2 fixing species that grow in strongly P limited wetlands.  相似文献   

19.
Current restoration measures of degraded, acidified heathland ecosystems have not always been successful in the Netherlands. Positive effects of a restored hydrology are often counteracted by acidification of the soil and the local groundwater system. Liming of the heathlands in the catchment of moorland pools might contribute to the restoration of both habitats. Experimental catchment liming was carried out in two degraded Dutch heathlands, with doses varying between 2 and 6 tons/ha. Catchment liming resulted in increased pH and base cation concentrations in the highest elevated limed parts, as well as in the lower situated, nonlimed heath areas and moorland pools. Generally, catchment liming created suitable conditions for the return of heathland target species, and the positive effects lasted for at least 6 years. The response of the heathland vegetation to the liming has, however, been slow because only a small number of endangered plant species increased in abundance. In contrast, four Red List soft‐water macrophytes strongly increased in abundance in the moorland pool. Our results show that, even with the slow return of Red List plant species, catchment liming can be a successful management tool for the restoration of the acidified heathland landscape.  相似文献   

20.
Abstract. The dynamics of seed population on slope surfaces were studied to test the hypothesis that the lack of vegetation on badlands is caused by seed removal by erosion. The initial soil seed bank and two years of seed rain and seed removal by erosion were estimated in two small catchments, and a seed balance was constructed. In addition, six rainfall simulation experiments were performed to test the susceptibility of seeds to be removed by overland flow. A variety of soil surface conditions, rainfall characteristics and plot sizes were used in these experiments. Soil seed bank densities are low, but enough for the development of plant cover. Seed losses due to erosion after natural rains were low (< 13 %), and in agreement with seed losses from simulated rainfall experiments. After two years, seed inputs in the seed rain were greater than seed outputs through seed removal, which resulted in a continuous increase in the numbers of seeds in the soil bank. These results point out that seed removal by erosion is not the key factor explaining the lack of vegetation on badlands. It is suggested that other factors, such as those related to seed germination and seedling survival, may play an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号