首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees > or = 3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane) and the canopy thinning phase (marked by increased competition and mortality). Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005) and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration.  相似文献   

2.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

3.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

4.
Land‐use change is the main cause of deforestation and degradation of tropical forest in Mexico. Frequently, these lands are abandoned leading to a mosaic of natural vegetation in secondary succession. Further degradation of the natural vegetation in these lands could be exacerbated by stochastic catastrophic events such as hurricanes. Information on the impact of human disturbance parallel to natural disturbance has not yet been evaluated for faunal assemblages in tropical dry forests. To evaluate the response of herpetofaunal assemblages to the interaction of human and natural disturbances, we used information of pre‐ and post‐hurricane herpetofaunal assemblages inhabiting different successional stages (pasture, early forest, young forest, intermediate forest, and old growth forest) of dry forest. Herpetofaunal assemblages were surveyed in all successional stages two years before and two years after the hurricane Jova that hit the Pacific Coast of Mexico on October 2011. We registered 4093 individuals of 61 species. Overall, there were only slight effects of successional stage, hurricane Jova or the interaction between them on abundance, observed species richness and diversity of the herpetofauna. However, we found marked changes in estimated richness and composition of frogs, lizards, and snakes among successional stages in response to hurricane Jova. Modifications in vegetation structure as result of hurricane pass promoted particular changes in each successional stage and taxonomic group (anurans, lizards, and snakes). Secondary forests at different stages of succession may attenuate the negative effects of an intense, short‐duration, and low‐frequency natural disturbance such as hurricane Jova on successional herpetofaunal trajectories and species turnover.  相似文献   

5.
To better understand how management and restoration practices influence the response of terrestrial ecosystems to large-scale disturbances, it is critical to study above- and belowground effects. In this study, we examined the immediate effect of a major hurricane on aboveground forest structure, arbuscular mycorrhizae (AM) and belowground carbon pools in experimentally thinned plots in a tropical forest. The hurricane occurred five years after a thinning treatment, when thinned plots had similar aboveground carbon stocks but different forest structure compared to control plots. Thinned plots had more large diameter (>10 cm) trees compared to the control plots, which were characterized by a higher density of small diameter (<10 cm) trees. Despite pre-hurricane differences in forest structure, there were no significant differences between treatments in changes of canopy openness or number of affected trees following the hurricane. Thinned plots had larger belowground carbon pools than the controls plots before the hurricane, and these differences remained after the hurricane despite rapid decomposition of organic matter rich in nitrogen. There were no pre-hurricane differences in AM fungal spores or total AM root colonization. The hurricane reduced AM sporulation by nearly 50% in both treatments, yet we observed a significant increase in AM root colonization after the hurricane with greater AM colonization in the thinned plots. Hurricanes have well-known visible aboveground effects, but here we showed that less visible belowground effects are influenced by forest management and may play an important role in forest recovery.  相似文献   

6.
Insects are important participants in many ecosystem processes, but the effects of anthropogenic and natural disturbances on insect communities have been poorly studied. To describe how disturbances affect insect communities, we addressed two questions: Do insect communities return to a pre‐hurricane composition? And how do insect communities change during succession? To answer these questions, we studied insect communities in a chronosequence of two abandoned pastures (5 yr and 32 yr) and a mature forest (>80 yr) that were recently disturbed by two hurricanes (Hurricane Hugo, 1989) Hurricane Georges, 1998). Although insect abundance and richness fluctuated during the study, all sites returned to pre‐hurricane (Hurricane Georges) abundance and richness in less than one year. All trophic categories present before Hurricane Georges were present after the hurricane, but richness within categories fluctuated greatly. Insect richness did not increase during succession; the 5 yr site had the highest richness, the >80 yr site had an intermediate richness, and die 32 yr site the lowest. Nevertheless, the species composition of the two forested sites was different in comparison to the 5 yr site. These results suggest that trophic structure varies little in time and space, but the species composition within each trophic category is highly variable.  相似文献   

7.
Synopsis The reef flats of Saint-Pierre and Saint-Leu (Reunion Island, Indian Ocean) suffered badly from hurricane Firinga on 29 January 1989. The high degree of silting due to increased run-off killed the coral colonies. Fish communities were surveyed at four periods following the hurricane (March and September 1989, March and September 1990). An increase in both species richness (31 to 47 spp. per census) and abundance (169 to 265 individuals per census) of fishes was observed with time, along with changes in their trophic structure. This positive succession may be linked to the disappearance of the silt layer from reef flats since September 1989. Nevertheless, there were differences in fluctuations and trophic structure of the fish community between back-, inner- and outer-reef flats. Finally, differences in recovery between the two reefs are related to the overall environmental degradation of the Island, chiefly by human perturbation, prior to the hurricane.  相似文献   

8.
The effects of forest management on vegetation structure and capture frequencies of nymphalid butterflies were studied in a logged rain forest in south-east Côte d'Ivoire. An experimental compartment, where liberation thinning was carried out 3 years before, and a 5-year-old mono-dominant tree plantation were compared to a regenerating control compartment; 3642 specimens of 97 species were trapped. Accumulated species richness and diversity indices were lower in the control compared to the liberation thinning compartment, but lowest in the plantation. However, the habitat preference for traps situated in the control compartment was negatively correlated with the size of the species geographical range. Four out of five species with a lower capture frequency in the liberation thinning compartment showed preferences for mature succession stages and were either Upper Guinean endemics or Guinea–Congolian–restricted species. The seven species with higher capture frequencies in the liberation thinning compartment were all geographically widespread. Five of them showed higher frequencies in younger succession stages. Eight species, three canopy specialists and two Guinea savannah species, significantly preferred the plantation, while 17 species avoided this management type. Liberation thinning seems to affect the more specialised species with smaller geographic ranges, thus risking loss of regional diversity.  相似文献   

9.
The trajectory of hurricane-induced succession was evaluated in a network of forest plots measured immediately before and 3 mo, 5, 10, and 15 yr after the direct impact of a Category 4 hurricane. Comparisons of forest structure, composition, and aboveground nutrients pools were made through time, and between species, life-history groups and geomorphic settings. The hurricane reduced aboveground biomass by 50 percent, causing an immediate decrease in stem density and diversity indices among all geomorphic settings. After 15 yr, basal area and aboveground biomass returned to pre-hurricane levels, while species richness, diversity indices, and stem densities exceeded pre-hurricane levels. Differences in species composition among geomorphic settings had not returned after 15 yr but differences in stem densities and structure were beginning to emerge. Significant differences were observed in the nutrient concentration of the three species that comprised the most aboveground biomass, and between species categorized as secondary high-light species and primary, low-light species. Species whose abundance was negatively correlated with the mature forest dominant also had distinct nutrient concentrations. When total aboveground nutrient pools were compared over time, differences in leaf nutrients among species were hidden by similarities in wood nutrient concentrations and the biomass dominance of a few species. The observed successional trajectory indicates that changes in species composition contributed to fast recovery of aboveground biomass and nutrient pools, while the influence of geomorphic setting on species composition occurs at time scales >15 yr of succession.  相似文献   

10.
A. E. LUGO 《Austral ecology》2008,33(4):368-398
Abstract Hurricanes have visible and invisible effects on forests. The visible effects are dramatic, noticeable over the short‐term and relatively well documented in the literature. Invisible effects are less understood as they require well‐focused research both in the short‐ and long‐term time scales. This review of the literature on hurricane effects focuses on the Neotropics and the temperate zone of North America. The material is organized according to a heuristic model that distinguishes between immediate effects (0 to 3 years), immediate responses (0 to 20 years), trajectories of responses (0 to 100 years) and long‐term legacies (>100 years). It is suggested that the ecological role of hurricanes involves six principal effects: 1. they change the ecological space available to organisms; 2. they set organisms in motion; 3. they increase the heterogeneity of the landscape and the variability in ecosystem processes; 4. they rejuvenate the landscape and its ecosystems and redirect succession; 5. they shape forest structure, influence their species composition and diversity and regulate their function; and 6. they induce evolutionary change through natural selection and ecological creativity through self‐organization. A new approach to hurricane research will study hurricanes at the same scale at which they operate (i.e., across latitudes and longitudes and over disturbed and undisturbed landscapes). This research will require networks of observation platforms located along expected hurricane paths to facilitate forest structure and functioning observations across gradients of hurricane frequency and intensity. This research will also require use of remote sensing and automated wireless technology, hardened to survive hurricane‐strength winds and floods to assure real time measurements of the characteristics of hurricanes and ecosystem responses. No progress will be forthcoming in the understanding of hurricane effects if we do not learn to quantify objectively the energy dissipation of hurricanes on the full grid of affected forests as the hurricane passes over a landscape.  相似文献   

11.
利用全林木定位的方法, 对地表火干扰1年后的樟子松(Pinus sylvestris L. var. mongolica Litv.)林进行调查, 并通过假设检验和成对相关函数对其林火及林分结构特征和空间格局进行分析。结果表明, 林火强度相似的同一场地表火干扰下, 不同林分的密度均大大降低, 胸高断面积仅略有下降, 林分结构特征则有趋同的态势。不同林分的空间格局也有相似的变化趋势, 烧死木均表现为显著的双尺度聚集分布及显著的正相关, 活立木也表现出显著的正相关; 地表火干扰前后, 樟子松林的空间格局均为显著的聚集分布, 但地表火干扰后其聚集分布的尺度范围变小; 存活林木中, 大树和幼树则呈现出相互独立或略微排斥的关系。显然, 地表火驱动下, 不同樟子松林的空间格局呈现出相似的变化趋势, 并推动其向着成熟林方向演替, 这对天然樟子松林的资源保护和经营管理有着重要意义。  相似文献   

12.
In 1998, storms related to Hurricane Isis caused extensive gaps in the cloud forest of El Triunfo Biosphere Reserve in Chiapas, Mexico, where severe storms are infrequent. We examined how this disturbance affected bird species composition. Species richness and composition were similar both between pre‐ and post‐disturbance forest and between newly created gaps and plots that remained forested after the hurricane. However, differences in response guilds were greater between pre‐ and post‐disturbance plots than between forest plots with gaps after disturbance. Granivorous, omnivorous, and terrestrial species were more abundant before the hurricane, whereas insectivorous, midstory, and generalist foragers were more abundant after the hurricane. In addition, species with high sensitivity to disturbance were more abundant in the pre‐disturbance forest, while low sensitivity species were more abundant after disturbance. In the post‐disturbance forest, insectivorous species were most abundant in gaps and terrestrial‐canopy foragers were most abundant in forest plots. Permanently open areas had significantly lower species richness, but had lowland generalist and second‐growth species not present in the cloud forest. Results suggest that changes in species composition were not limited to the newly created gaps, but also affected the whole forest. The decline of high sensitivity species after disturbance supports the hypothesis that disturbance negatively affects specialists and benefits generalist species. Although there is evidence that natural communities tend to return to pre‐disturbance conditions, changes in community structure could be aggravated if recurrent hurricanes occur before succession takes place.  相似文献   

13.
Seed removal was assessed for two tree species in three forest types: (1) secondary forest with and (2) without selective vegetation thinning, and (3) mature forest. Selective vegetation thinning meant the removal of all stems ≤3 cm in diameter of secondary‐forest species and was intended as a management technique to accelerate succession toward mature forest. Thinning did not have an effect on seed removal. One of the species showed lower seed removal in mature forest compared to secondary forest.  相似文献   

14.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

15.
Thinning and burning forests established on revegetated mine pits in jarrah (Eucalyptus marginata) forests of south‐west Australia is being considered as a management option to accelerate succession in sites with excessive tree densities. To assess the impact of thinning and burning on reptiles and small mammals, we installed trapping grids in eight thinned and burned sites, each paired with untreated controls. Of the eight pairs, four were in rehabilitated sites (planted with nonlocal species) and four were in restored sites (seeded with local species). Thinning and burning had no significant impact on the small mammal community, although Cercatetus concinnus was more abundant in rehabilitated sites. In contrast, thinning and burning significantly increased reptile abundance and species richness, with two species (Morethia obscura and Menetia greyii) only recorded in thinned and burned sites. We concluded that thinning and burning was a successful management option in revegetated mine pits in jarrah forests, particularly because reptile communities created by thinning and burning were more similar to those in unmined forest. Although published studies for comparison are few, we expect thinning and burning to have generally positive effects on reptile communities in forest ecosystems where fire is an important disturbance agent. Our study emphasizes the importance of monitoring revegetated areas over time periods sufficient to detect deviations from desired successional trajectories, so that management options, such as thinning and burning, can be implemented if required.  相似文献   

16.
森林群落物种多样性格局和动态一直是生态学的研究热点,人工林弃管后演替进程中物种多样性变化也很值得研究。杉木(Cunninghamia lanceolata)作为我国南方林区人工栽培最广、经济价值最高的用材树种之一,其人工林分布面积很大,通常群落结构简单、物种多样性低,然而群落中杉木数量如何影响植物物种多样性,迄今缺乏研究。在浙江省自然保护区内,选择不同疏伐强度和弃管时间的杉木人工林,建立了6个1 hm~2长期动态监测样地,在10 m×10 m、20 m×20 m、50 m×50 m和100 m×100 m尺度下,探究群落物种多样性(物种丰富度、Simpson指数、Shannon-Wiener指数和Pielou均匀度指数)的变化规律,分析杉木数量(多度和相对多度)对物种多样性的影响。结果显示:弃管前对杉木林的疏伐强度越高,演替恢复后的群落物种多样性越高。相同疏伐程度下,物种多样性随演替时间的延长有先升高后降低的趋势。取样尺度小于100 m×100 m时,杉木数量与物种多样性呈极显著负相关;100 m×100 m尺度下仅杉木相对多度与3种多样性指数呈显著负相关,杉木多度与各物种多样性均无显...  相似文献   

17.
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is currently the preferred method of slash removal because it allows land managers to burn large quantities of slash in a more controlled environment in comparison with broadcast burning slash. However burning slash piles is known to have adverse effects such as soil sterilization and exotic species establishment. This study investigated the effects of slash pile burning on soil biotic and chemical variables and early herbaceous succession on burned slash pile areas. Slash piles were created following tree thinning in two adjacent approximately 20‐ha ponderosa pine (Pinus ponderosa) restoration treatments in the Coconino National Forest near Flagstaff, Arizona. We selected 30 burned slash pile areas and sampled across a gradient of the burned piles for arbuscular mycorrhizal (AM) propagule densities, the soil seed bank, and soil chemical properties. In addition, we established five 1‐m2 plots in each burned pile to quantify the effect of living soil (AM inoculum) and seeding amendments on early herbaceous succession in burned slash pile areas. The five treatments consisted of a control (no treatment), living soil (AM inoculum) amendment, sterilized soil (no AM inoculum) amendment, seed amendment, and a seed/soil (AM inoculum) amendment. Slash pile burning nearly eliminated populations of viable seeds and AM propagules and altered soil chemical properties. Amending scars with native seeds increased the cover of native forbs and grasses. Furthermore adding both seed and living soil more than doubled total native plant cover and decreased ruderal and exotic plant cover. These results indicate that seed/soil amendments that increase native forbs and grasses may enhance the rate of succession in burned slash pile areas by allowing these species to outcompete exotic and ruderal species also establishing at the site through natural regeneration.  相似文献   

18.
Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning) on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests). We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals) and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE) species richness had decreased by 1.4 (± 0.9) species in thinning plots, but increased by 0.7 (± 1.0) species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning – but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild – one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa.  相似文献   

19.
Secondary succession in two subtropical forests   总被引:4,自引:0,他引:4  
Li  X.  Wilson  S.D.  Song  Y. 《Plant Ecology》1999,143(1):13-21
We studied secondary succession in two subtropical evergreen broad-leaved forests near Shanghai, China that had been harvested 2–60 years earlier. Shrubs were thinned in one of the forests to about 60% of their original density for the first 20 years after harvesting. The other was not disturbed after harvesting. Five stands were sampled in each forest. Species composition and richness varied little during succession. Biomass, soil organic matter, total soil nitrogen, and soil water all increased with time. Soil organic matter and total nitrogen were significantly less in thinned forest than in undisturbed forests, but soil moisture did not vary with shrub thinning. Total tree density did not change over time, suggesting that species replacements were not driven by self-thinning. The eventual replacement of shrubs by trees occurred because shrub density decreased whereas tree density remained constant and tree mass increased.  相似文献   

20.
Hurricane Joan struck the Caribbean Coast of Nicaragua in October 1988 causing extensive damage to the lowland rain forest of the zone. Six permanent plots were established in 1990 and the growth rates of all individuals in a total area of 6000 m2 monitored for six years. Eighteen of the species were abundant enough to measure species-specific growth rates. The post hurricane successional process included a great deal of resprouting of pre-existing individuals and the current state of the forest includes a low but very dense canopy, suggesting that competition is entering an intensive phase. Specific growth rates between the time of the hurricane and the present thus represent establishment or regenerative growth rates and provide an indication of whether or not distinct regeneration niches exist. Three distinct patterns of growth rate seem apparent, fast-growing heliophyles (eight species), slow-growing resprouters (nine species), and vochysia ferruginea, which seems to have a special pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号