首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question : This paper studies the establishment and performance of Cortaderia selloana (Pampas grass), an alien South American ornamental species that is invading many parts of the world. We asked whether (1) early successional stages were the most susceptible to C. selloana invasion; (2) soil microdisturbances increased invasion at any point of succession, and (3) C. selloana invasion of later successional stages was modulated by vegetation type Location : Delta del Llobregat (Catalonia, NE Spain). Methods : We monitored survival and growth of transplanted C. selloana seedlings in disturbed and non‐disturbed plots throughout a successional gradient with an age range of < 1 to > 10 years in different vegetation types and within the area of influence of coexisting species with similar growth form. Results : Although seedling survival was extremely low in all treatments, our results revealed that early successional stages were not the most easily invaded since we found no significant differences in the percentage survival of C. selloana along the successional gradient. However, survival and seedling bio‐mass were enhanced by soil disturbance at any seral stage. This result suggested that inhibition ruled C. selloana invasion. Invasibility neither depended on the invaded vegetation type nor on the co‐existing species with similar growth form. Finally, C. selloana invasion was not enhanced by decreasing competition with Phragmites australis, a native coexisting species because survival rates after a year were not significantly different. However, Phragmites increased C. selloana leaf length probably due to shading. Conclusions : C. selloana recruitment appears to be positively affected by soil disturbance but it is independent of successional stage or vegetation type.  相似文献   

2.
D. Magda  M. Jarry 《植被学杂志》2000,11(4):485-492
Abstract. A demographic study of the undesirable perennial weed Chaerophyllum aureum in extensified French Pyrenean hay meadows was carried out. For two successive years the effect of date and intensity of cutting on the population demography of this colonizer. Population density is sensitive to cutting practices essentially through fecundity, seedling survival rate and seed dispersal between fields. Cutting reduces fecundity by preventing seed formation (early cutting) or by exportation of some mature seeds with hay (late cutting). Nevertheless, the number of seeds transported between field populations by hay harvest, organic manuring and associated cutting practices compensates for the lack of seed production in early‐cut populations, maintaining them at relative high densities. For each of three cutting regimes, the number of immigrant and emigrant seeds has been indirectly estimated from a prediction of population density at equilibrium from demographic parameters measured in field populations and compared with observed population densities.  相似文献   

3.
Aims To determine how changes in land use, climate and shrub cover affect the invasion dynamics of native (Pinus sylvestris L.) and introduced (Pinus nigra Arn. subsp. nigra) pines in grasslands. To analyse how these factors interact and affect seedling recruitment, a bottleneck in the lifecycle of many trees. Such information is required to manage the dynamics of these species. Location Grands Causses, calcareous plateaus (Southern France). Methods We used both published and unpublished demographic and dispersal data to assess population growth and invasion speed of invading pines. A demographic and spatially explicit model, which included density dependence and stochasticity in dispersal, demography and environment, was run for different scenarios of sheep grazing pressure (nil, extensive or intensive), shrub cover (0, 10 or 20%) and drought frequency (past‐to‐present or future). For each scenario, population growth rate, invasion speed and elasticity of invasion speed to each demographic and dispersal parameter were computed. Results Grazing was the main factor for limiting invasion speed. Shrub cover reduced tree spread under nil or extensive grazing pressure, but increased it under intensive grazing pressure. Although dry years led to nil seedling establishment rates, an increase in their frequency had surprisingly few effects on pine invasion speed. This last result remained unchanged when very dry years, inducing seedling, but also sapling mortality were introduced. In most environmental conditions, population growth rate and invasion speed were higher for the introduced than for the native pine. Elasticity analysis highlighted the importance of demographic parameters on invasion speed, notably adult and sapling survival. Main conclusion Tree invasion speed may rely at least as much on human activities, like sheep grazing, tree cutting and non‐native trees introduction, as on changes in climate factors. Therefore, human activities need to be explicitly taken into account in the prediction and management of tree dynamics.  相似文献   

4.
Survivorship in Acacia suaveolens was assessed through seedling and adult stages. Moisture stress was found to be the critical factor limiting early seedling survival. Both seedling and adult populations were characterized by periods of low mortality interspersed with pulses of high mortality. A composite survivorship curve for A. suaveolens based on nine sites predicts that some 20–25 years after afire, established plants should disappear from the above-ground flora if another fire does not occur. Fecundity and survivorship data were used to estimate the flux of seed in the soil over time in a hypothetical A. suaveolens population. From this it was predicted that, following establishment of plants after a fire, the seed-bank would rapidly reach a maximum after 6 years and thereafter slowly decline, until after 60 years there would be only as many seeds as there were original parental plants. The situation would vary with predispersal seed predation, seed predation on the soil surface, seed dispersal by ants to ‘unsafe sites’ and the size of the initial seed-bank prior to establishment. Only after a very long inter-fire period would A. suaveolens be eliminated from a site. Elimination of the species is also possible under very frequent fires. A 2–5 year fire-free period is needed for plants to reach maturity and another 6 years are needed to maximize seed input into the soil seed-bank. In addition, seedling recruitment following cool burns is low to non-existent as dormancy is not broken for most seeds in the soil during such burns.  相似文献   

5.
  • The effects of biological soil crusts (BSC) on vascular plant growth can be positive, neutral or negative, and little information is available on the impacts of different BSC successional stages on vascular plant population dynamics.
  • We analysed seedling emergence, survival, plant growth and reproduction in response to different BSC successional stages (i.e. habitats: bare soil, cyanobacteria, lichen and moss crusts) in natural populations of Echinops gmelinii Turcz. in the Tengger Desert of northwest China. The winter annual E. gmelinii is a dominant pioneer herb after sand stabilisation.
  • During the early stages of BSC succession, the studied populations of E. gmelinii were characterised by high density, plant growth and fecundity. As the BSC succession proceeded beyond moss crusts, the fecundity decreased sharply, which limited seedling recruitment. Differences in seedling survival among the successional stages were not evident, indicating that BSC have little effect on survival in arid desert regions. Moreover, E. gmelinii biomass allocation exhibited low plasticity, and only reproductive allocation was sensitive to the various habitats. Our results further suggest that the negative effects of BSC succession on population dynamics are primarily driven by increasing topsoil water‐holding capacity and decreasing rain water infiltration into deeper soil.
  • We conclude that BSC succession drives population dynamics of E. gmelinii, primarily via its effect on soil moisture. The primary cause for E. gmelinii population decline during the moss‐dominated stage of BSC succession is decreased fecundity of individual plants, with declining seed mass possibly reducing the success of seedling establishment.
  相似文献   

6.
Theory predicts that in more stressful environments, positive plant-plant interactions should be more important than negative ones. For instance, in arid and semiarid regions, amelioration of soil drought produced by the shade of established plants could facilitate establishment of other species, in spite of light reduction. However, this theory has not been tested widely in the context of plant invasion. In this paper we evaluated the hypothesis that in a semiarid ecosystem of central Chile, the native tree, Lithrea caustica, should facilitate through positive shading effects, the seedling establishment of two widely planted and invasive forestry species, Pinus radiata and Eucalyptus globulus. We assessed the seedling establishment examining two processes: seedling recruitment (including germination) and subsequent seedling survival. We sowed seeds (to assess recruitment) and planted 8 months old seedlings (to assess seedling survival) of each exotic species under Lithrea patches, open sites and under an artificial shade mimicking Lithrea shading. The study was repeated in a north-facing and a south-facing slope in the study area located in a xeric zone within the distribution range of plantations of these species in central Chile. Our results show that in a north-facing slope Lithrea had positive effects on recruitment of both species, which was produced by shading. These effects were counteracted by negative effects on seedling survival but through a different mechanism, which suggests that Lithrea would have no significant effect on the whole seedling establishment process of Pinus radiata nor Eucalyptus globulus in this habitat. In turn, in a south-facing slope Lithrea had no significant effect on recruitment but had a negative effect on seedling survival, which was not produced by shading. This suggests that in this habitat Lithrea has a negative effect on the seedling establishment of these exotic species. Our results suggest that the effect of the native Lithrea caustica on the seedling establishment of these exotic species is dependent upon the life-cycle phase (recruitment or seedling survival) and habitat even within the same semiarid ecosystem. In contrast to the expected positive effects Lithrea is unlikely to facilitate seedling establishment of these exotic species in this area, and in fact in some habitats this effect could be negative. However, our results also suggest that a common mechanism proposed to resist invasion in forest ecosystems such as shading, probably is not sufficient to inhibit invasion in a semiarid region.  相似文献   

7.
Summary Plant demographic and root exclusion approaches were used to examine the influence of roots of adult Artemisia tridentata, Agropyron desertorum, and Agropyron spicatum individuals on seedling survival of four C3 semiarid species, three perennials, Ar. tridentata, Ag. desertorum, Ag. spicatum, and an annual, Bromus tectorum. Furthermore, height of Ar. tridentata seedlings and seed production of B. tectorum were assessed. The probability of a seedling being alive significantly depended on the seedling species, the neighboring adult species, and on the depth to which root competition was excluded. As seedlings, survival of Agropyron species did not differ, whereas survival of Ar. tridentata seedlings was higher than Ag. desertorum and was similar to Ag. spicatum. Bromus tectorum maintained significantly higher survival rates than perennial seedlings. Established individuals of Ar. tridentata reduced seedling survival more than established individuals of either Agropyron species. Seedling survival significantly increased with greater depth of root exclusion for the perennials but did not significantly affect seedling survival of B. tectorum. Height of Ar. tridentata seedlings and seed production of B. tectorum significantly increased with depth of root exclusion. Seed production of B. tectorum was highest when competing with Ag. desertorum and was lowest with Ar. tridentata. Root competition decreased the seed population of B. tectorum in the next generation even though it had no impact on survival. Competition in the upper soil horizon occurs between seedlings and established adults early in the growing season and potentially restricts root growth of seedlings. In arid and semiarid ecosystems, soil moisture is depleted from the upper horizons first, resulting in the death of seedlings that do not have access to moisture.  相似文献   

8.
Field experiments and wild population monitoring have been performed to study the population biology of the rare long-lived Kosteletzkya pentacarpos (Malvaceae) in the Llobregat delta (Catalonia, NE Spain). Field experiments explored the fate of seeds in soil at different depths, seedling emergence, and seedling survival, growth and flowering with and without canopy cover during the first 2 years of life. They also were used to ascertain the size-related pattern of seedling survivorship and flowering. Field data concerning mortality, growth and fecundity of adult plants were collected yearly in three wild populations for 7–9 years. In old adults (reproducing long before the beginning of the study), ANOVAR tests were performed to compare maximum diameter, total and fertile shoots, and viable seeds per plant between years and populations. New adults (starting flowering the first year of study or in subsequent years) were used to explore, using linear and polynomial regressions, the association of RGR and both total and fertile shoot production with (i) plant size (maximum basal diameter or its logarithm); (ii) plant age (years in adult stage); and (iii) plant age after removing the effect of size and year-to-year fluctuations. In this case, we examined the age-related pattern of the residuals obtained from the regressions with size and year. The study identified the following main demographic features of K. pentacarpos: (i) transient, shallow soil seed bank; (ii) shade tolerance of seedling emergence; (iii) canopy-facilitation of seedling survival and bolting during the first two years of life; (iv) size-related pattern for seedling survivorship but not flowering; (v) exclusive dependence on a fluctuating seed output for reproduction; (vi) rapid adult growth; and (vii) high adult longevity but (viii) rapid depletion of fecundity with age. Seed output was highly constrained by mining insects. The changing size-structure and the decreasing reproductive success of old adults in several populations suggest that K. pentacarpos might undergo a dynamics of population establishment and extinction in the Ricarda marshes. Because of fluctuating reproduction and the lack of a persistent seed bank, the conservation of standing adult populations appears to be a key factor to ensure the persistence of the species.  相似文献   

9.
The impacts of invasive species are among the greatest threats to the persistence of native species and communities. Yet most work on rare plants has focused on issues such as habitat fragmentation and genetic diversity, while few studies have quantified the impacts of invasive plants on native ones or investigated the underlying mechanisms of those impacts. I used removal experiments to assess the effects of invasive grasses on the seedling and adult demography of an endangered California endemic, Oenothera deltoidesssp. howellii. Invasive plant removal significantly increased O. deltoides seedling recruitment, but had no effect on adult plants. Differences in seedling recruitment were primarily driven by greatly increased seedling emergence rates in removal plots, although there was also some evidence of higher seedling survivorship with invasives removal. Differences in habitat type strongly influenced both the effects of removal treatments and O. deltoides demography, with areas that support natural recruitment showing weaker treatment effects and higher overall recruitment, but lower adult survivorship, compared to those under restoration through planting. These results indicate that inhibition of germination due to reduced soil disturbance, rather than resource competition, appears to be the strongest impact of invasive plants on this rare endemic. Although previous work has documented the importance of changed disturbance regimes in generating invasion impacts, invader effects on rare plants are generally presumed to result from resource competition. Studies like this one highlight the need for a greater emphasis on understanding the mechanisms by which invasive plants impact native ones, and the importance of such information in designing conservation and management strategies.  相似文献   

10.
Weed invasion is a major threat to Australian tropical savannas, and controlling weeds is essential for successful re‐establishment of native species on disturbed sites. Gamba Grass (Andropogon gayanus) is an African grass which has invaded large areas of tropical savanna across northern Australia. Current management strategies in northern Australia focus on fire and glyphosate to effectively control mature plants; however, re‐establishment of infestations from the soil seed bank remains a major challenge to eradication efforts. This study focused on the effects of soil seed bank treatments on Gamba Grass recruitment on a mine site in northern Australia. Adult Gamba Grass plants within test plots were killed with glyphosate to exclude resource competition. Chemical, physical and biological treatments were then applied, and the treatment effects on subsequent Gamba Grass seedling emergence and survival quantified. Seedling emergence was significantly reduced by three of the four residual herbicide treatments tested. The most effective herbicide treatments, dalapon and sulfometuron, reduced emergence by 90% compared to the standard glyphosate treatment alone. This equated to a reduction in Gamba Grass seedling emergence from 1 seedling/m2 to 1 seedling 10 m?2, a major improvement for Gamba Grass management. These residual herbicide treatments significantly reduced the population density of Gamba Grass for at least 5 months after emergence. The physical and biological treatments did not have a significant effect on seedling emergence. This significant reduction in Gamba Grass seedling emergence and survival can substantially improve Gamba Grass management. Reducing re‐colonisation from the soil seed bank using residual herbicides provides a valuable management tool for land managers, integrating readily with established strategies for controlling the mature plants.  相似文献   

11.
Invasion by exotic plants often is restricted by processes, such as seed predation, acting on early life-history stages; however, the relative importance of these processes might vary among habitats. Modern human land use has created a mosaic of habitats in many landscapes, including the landscape of the northeastern United States. European buckthorn (Rhamnus cathartica) is an exotic plant that has achieved varying success in North American habitats. We studied dispersal, seed survival, germination, and seedling survival of buckthorn populations at four plots in each of sugar maple (Acer saccharum) forests, old fields, and abandoned conifer plantations in central New York State. Dispersal was low in maple forests, as evidenced by low collection rates of R. cathartica seeds in seed traps. Rates of post-dispersal seed predation were highest in maple forests and lowest in old fields, suggesting greater use of maple forests by granivorous rodents. Germination rates did not vary among seeds planted in soils of these habitats when studied in the laboratory despite differences in soil pH. Survival of transplanted seedlings was low in maple forests relative to old fields and plantations. Buckthorn invasion of old fields and abandoned plantations was not strongly constrained by factors we considered, and the buckthorn populations in these habitats were large. A combination of low dispersal by frugivores, low seed survival due to predation, and low seedling survival due to dim light conditions apparently prevents R. cathartica from invasion of intact maple forests of our area. Native fauna and canopy closure may act synergistically to reduce success of invasive plants in natural habitats.  相似文献   

12.
When sown over consecutive years at two sites in the Western Australian wheatbelt, a maximum of 34.5% of viable Chondrilla juncea seeds gave rise to emerged seedlings. During the early winter months at one site, waterlogging on a duplex soil type led to an almost complete failure of emergence. Very low levels of seed persistence (maximum 3.1%) between years were noted. The protection provided by stubble enhanced the survival of C. juncea seedlings which emerged during May, but for seedlings which emerged later, the effects of stubble upon seedling survival were strongly dependent upon the abundance of the red-legged earth mite (Halotydeus destructor) At the observed densities of winter annuals, the presence of seedlings and young plants appeared to reduce seedling mortality in C. juncea. Young plants of C. juncea were highly susceptible to simulated cultivation practices until 12 weeks following emergence. It is argued that seedling establishment of C. juncea is most likely to occur during the pasture phase of crop/pasture rotations in the Western Australian wheatbelt and that pastures immediately following cropping years are most prone to invasion.  相似文献   

13.
Aims Symbiotic relationships between fungal endophytes and grass species are known to increase stress resistance in the grass host; however, there is little evidence to suggest that the positive effects occur early in the grass life cycle. In this study, we explored the effects of the endophyte Epichlo? festucae on the growth and survival of Festuca eskia seedlings under drought and frequent cutting stress.Methods Festuca eskia seedlings were collected from the western part of the plant repartition area in a non-symbiotic population located in a mesic and heavily grazed site (W-NS) and from the eastern part in a symbiotic population from a xeric and lightly grazed site (E-S). The E-S population was experimentally freed from its endophyte (E-F). Two greenhouse experiments were conducted to compare growth and survival between the three seedling types under drought stress and frequent cutting. In the first experiment, 126 seedlings per seedling type (n = 378) were grown for 6 weeks under non-limiting conditions before the cessation of watering. After 3 weeks without irrigation, full irrigation was restored for 10 days to measure the survival rate. Leaf length, leaf elongation rate and survival rate were assessed per population. In the second experiment, 156 seedlings per seedling type (n = 468) were grown under non-limiting conditions. All seedlings were cut to 3 cm high, twice a week, during the first month of growth. Leaf elongation and tillering were monitored on 52 seedlings per seedling type. For each type, seedling survival rate was determined by the number of plants alive after 10 days of regrowth, without cutting.Important findings The drought experiment revealed a phenotypic differentiation to drought in 30 F. eskia populations, suggesting adaptive differentiation: the eastern seedlings showed the highest survival rate. A trade-off between growth and survival was highlighted: the highest drought survival rate was associated with the lowest leaf elongation rate under non-limiting water conditions. Endophyte presence in the eastern population increased seedling drought survival. In contrast, cutting survival rate was similar between W-NS and E-S because the presence of the endophyte increased seedling survival to frequent cutting. However, this positive effect came with a cost: the endophyte reduced seedling tillering rate.  相似文献   

14.

Non-native earthworms can alter ecosystems by modifying soil structure, depredating seeds and seedlings, and consuming soil organic matter, yet the initial responses of plant communities to earthworm invasions remain poorly understood. We assessed the effect of non-native earthworms on seedling survival during germination and after establishment using six native and six non-native plant species grown from seed in single- and multi-species experimental mesocosms. We examined the extent to which earthworms (1) influenced seedling survival, (2) selectively depredated native versus non-native plants, (3) impacted establishment based on seed size and/or root morphology, and (4) shaped community assembly. The effect of earthworms on seedling survival varied temporally and among species but inconsistently with respect to species origin. Differences in seed/seedling survival translated to changes in community assembly. Earthworms tended to reduce species abundance, richness, evenness, and diversity in multi-species mesocosms and led to the divergence of communities by treatment. In general, species with large seeds and fibrous roots dominated communities with earthworms present, whereas species with small seeds and taproots only persisted in multi-species mesocosms without earthworms. Our findings suggest that earthworms act as ecological filters in the early stages of invasion to shape community composition based on plant morphological traits.

  相似文献   

15.
Wet forest ecosystems in temperate regions have been heavily drained and logged, often with significant negative consequences for biodiversity in these habitats. Our research focused on population maintenance mechanisms of a declining wet forest sedge Carex loliacea L. We studied germination under different light regimes and seedling survival under different vegetation densities using an in situ removal experiment. For successful germination, seeds of C. loliacea need light; germination in reduced light conditions is depressed. The seeds of C. loliacea are able to accumulate a seed bank and exhibit seasonal dormancy cycles. Survival of seedlings strongly depends on competition with other plant species. Our results imply that changes in habitat conditions (draining, forest cutting) affect the successful generative reproduction of C. loliacea primarily via a change in light conditions, which is a strong factor both at the stage of germination and seedling growth. However, adult plants are able to persist over a much broader range of habitat conditions without detectable vitality loss.  相似文献   

16.
Question: What is the role of dispersal, persistent soil seed banks and seedling recruitment in population persistence of fleshy‐fruited obligate seeding plant species in fire‐prone habitats? Location: Southeastern Australia. Methods: We used a long‐term study of a shrubby, fleshy‐fruited Persoonia species (Proteaceae) to examine (1) seed removal from beneath the canopy of adult plants; (2) seedling recruitment after fire; (3) the magnitude and location of the residual soil seed bank; and (4) the implications for fire management of obligate seeding species. We used demographic sampling techniques combined with Generalised Linear Modelling and regression to quantify population changes over time. Results: Most of the mature fruits (90%) on the ground below the canopy of plants were removed by Wallabia bicolor (Swamp wallaby) with 88% of seeds extracted from W. bicolor scats viable and dormant. Wallabies play an important role in moving seeds away from parent plants. Their role in occasional long distance dispersal events remains unknown. We detected almost no seed predation in situ under canopies (< 1%). Seedling recruitment was cued to fire, with post‐fire seedling densities 6‐7 times pre‐fire adult densities. After fire, a residual soil seed bank was present, as many seeds (77‐100%) remained dormant and viable at a soil depth where successful future seedling emergence is possible (0‐5 cm). Seedling survival was high (> 80%) with most mortality within 2 years of emergence. Plant growth averaged 17 cm per year. The primary juvenile period of plants was 7–8 years, within the period of likely return fire intervals in the study area. We predicted that the study population increased some five‐fold after the wildfire at the site. Conclusions: Residual soil seed banks are important, especially in species with long primary juvenile periods, to buffer the populations against the impact of a second fire occurring before the seed bank is replenished.  相似文献   

17.
The impact of small scale disturbances on the early seedling performance components of Helleborus foetidus (Ranunculaceae) was studied through a transplant experiment. The aims of this study were: (i) to determine if the herbivory pattern depends on microsite disturbance, by the analysis of two of its components, seedling encounter (the probability of at least one seedling being harmed) and seedling exploitation (the proportion of seedling tissue removed once encountered); (ii) to test if seedlings of H. foetidus in disturbed microsites will survive in a greater proportion than seedlings in undisturbed microsites; (iii) to investigate if seedling survival is correlated with the degree of herbivory. Microsite disturbances had a large effect on the herbivory pattern. Seedlings growing in undisturbed vegetation had a 2-fold higher likelihood of being grazed and suffered 1.38-fold higher damage than those growing in disturbed plots. At the end of this experiment, after fourteen months, only 10.4% of the seedlings transplanted were still alive due to seedling desiccation, but no differences on seedling survival were found between disturbed and undisturbed plots. The effect of herbivory and the interactive effect of herbivory and disturbance on seedling survival only reached statistical significance dependent upon site. We concluded that although small scale disturbances had a large impact on herbivory patterns; they had only a minor role in the early seedling survival of H. foetidus. Only locally, small scale disturbances showed an effect on seedling survival through herbivory. Abiotic factors like summer drought and spatial variations determined the early survival of H. foetidus seedlings to a major extent.  相似文献   

18.
Woodlands dominated by Eucalyptus salmonophloia (salmon gum) occur throughout the fragmented landscape of the southwestern Australian wheatbelt. These remnants are often degraded by livestock grazing and weed invasion and in many cases there is little or no understorey remaining and little or no regeneration of the dominant tree E. salmonophloia. There is a growing interest in developing techniques for restoring remnant woodlands. This study describes techniques for establishing seedlings of the dominant tree and perennial understorey species in E. salmonophloia (salmon gum) woodlands degraded by livestock grazing. The study tests the hypothesis that, in addition to the exclusion of livestock, management of weeds and reintroduction of plant species, restoration of plant species diversity will require techniques which mimic large‐scale disturbances, reduce soil compaction, and restore soil water infiltration to suitable rates. Five‐month‐old seedlings of the dominant tree E. salmonophloia and four commonly associated woody shrubs (Acacia hemiteles, Atriplex semibaccata, Maireana brevifolia, and Melaleuca pauperiflora) were planted into areas that differed with respect to grazing (–rabbit/ ?livestock and +rabbit/–livestock), tree canopy disturbance (+/–competition with tree canopy) and amelioration of soil compaction (+/–deep ripping). Following three growing seasons and two summers, the exclusion of rabbits had no significant effect on the survival and growth of planted species. As a consequence grazing treatments are pooled for the purposes of presenting the impacts of removing competition with adult trees and soil deep ripping. The removal of competition with adult E. salmonophloia trees significantly improved the survival of E. salmonophloia seedlings but did not improve survival of understorey species. Deep ripping the soil significantly improved the survival of both E. salmonophloia and the shrub A. hemiteles but did not improve the survival of other understorey species. In contrast to seedling survival, the removal of adult E. salmonophloia trees and deep ripping soil significantly increased the growth of all species. The results indicate that increasing levels of intervention will increase the chances of successfully restoring tree and understorey species diversity in degraded E. salmonophloia woodlands.  相似文献   

19.
Herbivores can have strong deleterious effects on vital rates (growth, reproduction, and survival) and thus negatively impact the population dynamics of plant species. In practice, however, these effects might be strongly correlated, for example as a result of tradeoffs between vital rates. To get better insights into the effects of herbivory on the population dynamics of the long‐lived grassland plant Primula veris population projection matrices were constructed from demographic data collected between 1999 and 2008 (nine annual transitions). Data were collected in two large grassland populations, each of which was subjected to two treatments (grazing by cattle versus a mowing treatment), yielding a total of 36 matrices. We applied a lower‐level vital rate life table response experiment (LTRE) using the small noise approximation (SNA) of the stochastic population growth rate to disentangle the contributions of changes in mean vital rates, variability in vital rates, correlations between vital rates and vital rate elasticities to the difference in the stochastic growth rate. Stochastic growth rates (a= log λS) were significantly lower in grazed than in mown plots (a= 0.0185 and 0.1019, respectively). SNA LTRE analysis showed that contributions of mean vital rates by far made the largest contribution to the observed difference in a between grazed and control plots. In particular, changes in sexual reproduction rates made the largest contributions to lower the stochastic growth rate in grazed plots: both adult flowering probabilities and flower and seed production were importantly lower in grazed populations, but these negative effects were largely buffered by increased establishment and seedling survival rates. Among the stochastic terms of the SNA decomposition, contributions of covariance and correlations between vital rates had the largest impact, whereas contributions of elasticities were smaller. The strongest correlation driver was the association between adult survival and seedling establishment, suggesting that environmental conditions favouring adult survival also are beneficial for seedling establishment. Overall, our results show that herbivory had a strong negative effect on the long‐term population growth rate of P. veris that was primarily mediated by differences in fecundity (flower and seed production) and germination.  相似文献   

20.
We investigated the seedling survival of five evergreen tree species over 3 years inside and outside deer-exclusion fences in a warm temperate evergreen broad-leaved forest on Yakushima Island, Japan. Seedling survival was examined in relation to topography, herbivory by sika deer, and the soil surface environment (i.e., soil surface wetness, light conditions, slope inclination, and soil disturbance). The study species included Myrsine seguinii Lév., Syzygium buxifolium Hook. et Arn. (Group A: species distributed on the upper slope of the study site), Litsea accuminata (Bl.) Kurata, Schefflera octophylla (Lour.) Harms (Group B: species distributed on the lower slope), and Cleyera japonica Thunb. p.p. emend. Sieb. et Zucc. (Group C: species distributed on both slopes). The soil surface environment on the upper slope was drier, lighter, and more easily disturbed than the lower slope. Generalized linear model analyses indicated that seedling survival in fenced and unfenced quadrats was greater on the upper slope than on the lower slope for Group A and B species but not for Group C species. A micro-spatial scale analysis revealed that seedling survival was correlated with soil wetness, ground light conditions, and soil disturbance but not slope inclination. These results indicate that seedling survival was correlated with topography, sika deer herbivory, and the micro-spatial scale environment. Topography-related differences in seedling survival appear to adequately reflect the observed adult plant distributions for Group A and C species but not for Group B species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号