首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies investigating relationships between plant traits and species rarity and commonness were surveyed to establish whether global patterns have emerged that would be of practical use in management strategies aimed at the long‐term conservation of species. Across 54 studies, 94 traits have been examined in relation to abundance, distribution and threatened status at local, regional and geographical spatial scales. Most traits (63) have yet to be the focus of more than one study. Half of the studies involved less than 10 species, and one‐quarter did not replicate rare–common contrasts. Although these features of the literature make it difficult to demonstrate robust generalizations regarding trait relationships with species rarity, some important findings surfaced in relation to traits that have been examined in two or more studies. Species with narrow geographical distributions were found to produce significantly fewer seeds (per unit measurement) than common species (in four of six studies), but did not differ with respect to breeding system (five of five studies). The majority of traits (including seed size, competitive ability, growth form and dispersal mode) were related to rarity in different ways from one study to the next. The highly context‐dependent nature of most trait relationships with rarity implies that application of knowledge concerning rare–common differences and similarities to management plans will vary substantially for different vegetation types and on different continents. A comparative analysis of distribution patterns in relation to several life‐history and ecological traits among 700 Australian eucalypt species was then performed. A significantly dispro­portionate number of tall species and species with long flowering durations had wide geographical ranges. Trait relationships with distribution were explored further through the development of a methodology incorporating multiple spatial scales. Eight theoretical categories were described illustrating variation in distribution patterns (and hence rarity and commonness) across small, intermediate and large spatial scales, based on the spatial structure of species occurrence across the Australian landscape. Each eucalypt species was placed into a category, and trait variation was explored across all species in relation to distribution patterns across multiple spatial scales. This approach yielded important information about trait relationships with distribution among the eucalypts, linking the spatial structure of points‐of‐occurrence with patterns of rarity and commonness. With the pressing need to protect increasing numbers of threatened species and slow rates of extinction, the development and refinement of a broadly usable methodology for rarity studies that encompasses multiple spatial scales, which can be used for any geographical location, will be useful in both conservation and management.  相似文献   

2.
Aims To investigate the relative explanatory power of source faunas and geographical variables for butterfly incidence, frequency, richness, rarity, and endemicity on offshore islands. Location The western Italian offshore islands (Italy and Malta). Methods Thirty‐one islands were examined. Data were taken from our own field surveys and from the literature. Two approaches were undertaken, described as island‐focused and species‐focused, respectively. Offshore islands were allocated to their neighbouring source landmasses (Italian Peninsula, Sicily and Sardinia–Corsica) and compared with each other for faunal attributes, source and island geography. Generalized linear and stepwise multiple regression models were then used to determine the relationships of island species richness, rarity and endemicity with potential geographical predictors and source richness, rarity, and endemicity (island‐focused). Species frequency and incidence were assessed in relation to geographical and source predictors using stepwise linear and logistic regression, and inter‐island associations were examined using K‐Means clustering and non‐metric scaling (species‐focused). Results The analysis reveals firm evidence for the influence of the nearest large landmass sources on island species assemblages, richness, rarity and endemicity. A clear distinction in faunal affinities occurs between the Sardinian islands and islands lying offshore from the Italian mainland and Sicily. Islands neighbouring these three distinct sources differ significantly in richness, rarity and endemicity. Source richness, rarity, and endemicity have explanatory power for island richness, rarity, and endemicity, respectively, and together with island geography account for a substantial part of the variation in island faunas (richness 59%, rarity 60% and endemicity 64%). Source dominates the logistic regression parameters predicting the incidence of island species [13 (38%) of 34 species that could be analysed]; three ecological factors (source frequency, flight period and maximal altitude at which species live) explained 75% of the variation in the occurrence of species on the islands. Species found more frequently on islands occurred more frequently at sources, had longer flight periods, and occurred at lower altitudes at the sources. The incidence of most species on islands (84%) is correctly predicted by the same three variables. Main conclusions The Italian region of the Mediterranean Sea has a rich butterfly fauna comprising endemics and rare species as well as more cosmopolitan species. Analysis of island records benefited from the use of two distinct approaches, namely island‐focused and species‐focused, that sift distinct elements in island and source faunas. Clear contemporary signals appear in island–source relationships as well as historical signals. Differences among faunas relating to sources within the same region caution against assuming that contemporary (ecological) and historical (evolutionary) influences affect faunas of islands in different parts of the same region to the same extent. The implications of source–island relationships for the conservation of butterflies within the Italian region are considered, particularly for the long‐term persistence of species.  相似文献   

3.
We investigated the conservation concern of Azorean forest fragments and the entire Terceira Island surface using arthropod species vulnerability as defined by the Kattan index, which is based on species rarity. Species rarity was evaluated according to geographical distribution (endemic vs. non endemic species), habitat specialization (distribution across biotopes) and population size (individuals collected in standardized samples). Geographical rarity was considered at 'global' scale (species endemic to the Azorean islands) and 'regional' scale (single island endemics). Measures of species vulnerability were combined into two indices of conservation concern for each forest fragment: (1) the Biodiversity Conservation Concern index, BCC, which reflects the average rarity score of the species present in a site, and (2) one proposed here and termed Biodiversity Conservation Weight, BCW, which reflects the sum of rarity scores of the same species assemblage. BCW was preferable to prioritise the areas with highest number of vulnerable species, whereas BCC helped the identification of areas with few, but highly threatened species due to a combination of different types of rarity.A novel approach is introduced in which BCC and BCW indices were also adapted to deal with probabilities of occurrence instead of presence/absence data. The new probabilistic indices, termed pBCC and pBCW, were applied to Terceira Island for which we modelled species distributions to reconstruct species occurrence with different degree of probability also in areas from which data were not available. The application of the probabilistic indices revealed that some island sectors occupied by secondary vegetation, and hence not included in the current set of protected areas, may in fact host some rare species. This result suggests that protecting marginal non-natural areas which are however reservoirs of vulnerable species may also be important, especially when areas with well preserved primary habitats are scarce.  相似文献   

4.
Aim We investigated how the spatial distribution of parasites, measured as either their geographical range size or their frequency of occurrence among localities, relates to either their average local abundance or the variance in their abundance among localities where they occur. Location We used data on the abundance of 46 metazoan parasite species in 66 populations of threespine sticklebacks, Gasterosteus aculeatus, from Europe and North America. Methods For each parasite species, frequency of occurrence was calculated as the proportion of stickleback populations in which it occurred, and geographical range size as the area within the smallest possible polygon delimited using the coordinates of the localities where it occurred. Generalized linear models were used to assess how these two measures of spatial distribution were influenced by several predictor variables: geographical region (North America or Europe), life cycle (simple or complex), average local abundance, the coefficient of variation in abundance across localities, and median prevalence (proportion of infected hosts within a locality). Results Our analyses uncovered four patterns. First, parasites in North America tend to have higher frequencies of occurrence among surveyed localities, but not broader geographical ranges, than those in Europe. Second, parasite species with simple life cycles have wider geographical ranges than those with complex cycles. Third, there was a positive relationship between average abundance of the different parasite species and their frequency of occurrence, but not between average abundance and geographical range size. Fourth, the coefficient of variation in abundance covaried positively with both the frequency of occurrence and geographical range size across the different parasite species. Thus, all else being equal, parasites showing greater site‐to‐site variability in abundance occur in a greater proportion of localities and over a broader geographical area than those with a more stable abundance among sites. Main conclusions Local infection patterns are linked with large‐scale distributional patterns in fish parasites, independently of host effects, such that local commonness translates into regional commonness. The mechanisms linking parasite success at both scales remain unclear, but may include those that maintain the continuum between specialist and generalist parasites. Regardless, the observed patterns have implications for the predicted changes in the geographical distributions of many parasites in response to climate change.  相似文献   

5.
Many plant traits are not randomly distributed among families. The question considered here is ‘are rarity and commonness of vascular plants in Fennoscandia randomly distributed among families?’ If more rare or more common species are found within a family, this may give some initial indications about which traits may predict rarity and commonness of species. A species was defined as rare or common based on its abundance and on the number of grid squares it occupies. 1521 naturally occurring species in 229 75×75 km grid squares were used. Permutation tests were performed to assess statistically if rarity and commonness are randomly distributed among families. Several families can be identified as having more rare or more common species than would be expected under a random allocation model. However, there are little deviations from what would be expected if rarity and commonness were randomly distributed among families in the whole Fennoscandian flora. It is proposed that the arbitrary geographical limits of the study area may account for the lack of any clear patterns of rarity and commonness among and between families.  相似文献   

6.
We analysed the threatened flora of Iberia (including the Balearic Islands) in order to define and explain factors related to levels of rarity and threat. Conservation measures were derived from the relationships observed. We used a random sample of 59 narrowly distributed plant species from the pool (588 species) of potentially endangered flora. Twelve variables were used to classify species into groups based on a multivariate technique: non-parametric principal component analysis. Our results do not indicate a single management model driven by a single mechanism of rarity. Four classes of rare plants were produced from the statistical algorithm: agamospermic species, plants associated with water, endemics, and range-margin (geographical-limit) plants. Some specific strategies for each of these groups are proposed, allowing further discussion and assessment. The overall pattern in conservation practice of threatened Iberian plants seems to be defined by three of the variables in use: ecological specificity, geographical rarity and rate of threat. None of the biological variables in the sample show particularly strong trends in the data.  相似文献   

7.
Aim We compare the influence of contemporary geography and historical influences on butterfly diversity for islands in the Aegean archipelago. Location The Aegean archipelago (Greece) and two islands (Cyprus and Megisti) in the Levantine Sea. Methods Thirty‐one islands were examined. Data are taken from own surveys (Coutsis and Olivier) and from the literature. Stepwise multiple regression is used to determine relationships between species richness, frequency, rarity and endemicity against potential geographical predictors. Stepwise logit regression is used to determine geographical predictors of species incidence on islands. Inter‐island and inter‐species associations have been examined using multivariate ordination and clustering techniques. Results The Aegean butterfly fauna is characterized by decreasing diversity and rarity, and increasing homogeneity, from the periphery to the present geographical centre of the archipelago (Cyclades). Diversity and rarity are shown to relate closely to species richness, and species richness, in turn, is largely explained by contemporary geography, particularly the degree of isolation from the nearest mainland sources of Greece or Turkey, and island dimensions. Islands towards the centre of the archipelago are characterized by a group of mobile species (n ≥ 20 species) with extensive ranges across Europe; species that would have recolonized Santorini (Thira) following the VI6 eruption there c. 1630 bc . Endemic components, indicative of autochthonous evolutionary events, are few (5% of species are endemic) compared to known sedentary organisms (molluscs and isopods), but exceed those for more mobile animals (i.e. birds); their distribution is mainly confined to large isolated islands along the Aegean arc (i.e. Kriti) and in the Dodecanese group. Main conclusions Contemporary geography, i.e. processes currently operating in ecological time, dominates butterfly diversity gradients (species richness, frequency, rarity and incidence) in the archipelago. Two reasons are suggested to account for the lack of endemism and the pattern of decreasing diversity into the Cyclades. First, relict butterfly elements may have become extinct on all but a few larger islands, particularly from environmental changes since the Neolithic (fire and overgrazing). Second, colonization from the continental landmasses is ongoing with more mobile species transferring even to the most isolated islands.  相似文献   

8.
1. Regional distribution, frequency of occurrence and relative abundance were scored in 2467 Norwegian lakes for all the recorded 130 species of crustacean zooplankton. The majority of species were rare in the sense that 65% of species were recorded in fewer than 10% of localities. Only six species were recorded in more than 50% of localities, and the median number of species in a given locality was 14 (i.e. 10% of the total species pool). 2. Abundances of all species were scored according to the fraction of lakes in which they were recorded, their geographical range of distribution, and their numerical abundance. Typically the most rare species were rare by all three criteria, and vice versa for the common species, pointing to rarity as an inherent property of some species. For some species this rarity reflects being on the edge of their distributional range, while for others rarity seems to be a consequence of their life cycle strategies. 3. Some of the truly rare species have high dispersal rates and high colonization abilities, but are rapidly replaced by other species. Others are confined to specific habitats, often highly eutrophic, pointing to highly specialized niche adaptations. 4. A major cause for the few truly common species seems to be the limited number of species that are able to coexist within a given locality, reflecting ‘the ghost of competition past’ and predation pressure. 5. While species composition and species richness may reflect colonization abilities and stochastic events, the presence or absence of species is not only a random lottery but also a consequence of species‐specific attributes.  相似文献   

9.
Our knowledge of suitable criteria to determine rarity in most marine invertebrates is lacking, thus hindering targeted impact studies, long-term monitoring programs, and associated conservation strategies. Standardized definitions of rarity are required to enable comparisons of different assemblages and taxa. Gaston (Rarity, Chapman and Hall, Melbourne, 1994) has recommended that rare species are defined as the lowest quartile of species in the assemblage. In this study, the 25% ‘cut-off’ was applied to intertidal macro-molluscs along the Illawarra Coast, Australia from 200 surveys of 13 reefs, using three measures of population structure; (1) local abundance (numerical rarity); (2) number of locations (spatial rarity) and; (3) percent of surveys (temporal rarity). Rare species were consequently defined as those species with no more than; (1) a local abundance of two individuals; (2) a regional occurrence at two reefs and/or; (3) a temporal occurrence in 2% of all surveys. These cut-off values increased when only intertidal specialists were analysed. Using a combination of all three measures, 62 species (42%) were classified as regionally rare, but only four of these were true intertidal specialists. Most species were rare by only one or two definitions of rarity; illustrating the importance of considering multiple measures of rarity and the need to design specifically targeted survey methods for future monitoring. Many species that are rare by all three definitions are likely to be temporary immigrants, as subtidal species were significantly more likely to be classified as rare. Clearly many factors can influence the rarity of marine invertebrates on intertidal reefs, and these must all be considered to set appropriate conservation priorities.  相似文献   

10.
We investigated the influence of body size on rarity patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this we calculated geographical range size (no. of 10 km square cells), habitat breadth (no. of phytoclimatic units), and abundance (no. of sampled individuals) using a large database containing 3,561 georeferenced records for 84 native species. For each species, we used total body length to correct rarity measures for body size. Then we calculated vulnerability (Kattan) indices using both corrected and uncorrected rarity scores. Finally we used species range trends (expanded vs. contracted) as a measure of actual species decline. We found that range trends were correlated with vulnerability index independently from body size correction, the species with the highest vulnerability being those that experienced the strongest range contraction for both corrected and uncorrected measures. Also, we found that correcting for body size may be problematic because of the weak correlations between body size and geographical and ecological rarity (notably, abundance was not correlated). These findings indicate that correcting rarity for body size is not only theoretically questionable, but also practically difficult and possibly useless for conservation purposes.  相似文献   

11.
Aim I examine the relationship between geographical range size and three variables (body size, an index of habitat breadth, and an index of local abundance) within a phylogenetic framework in North American species of suckers and sunfishes. Location North America Methods Regressions after independent contrasts of geographical range size, body size, habitat breadth, and local abundance. Results Species with large range sizes tend to be larger-bodied, be more locally abundant, and have higher habitat breadths. Character reconstructions support the prediction that variables associated with rarity (small geographical range size, low local abundance, low niche breadth, and large body size) evolve in unison, although large body size was associated with the opposite traits in these taxa. Gaston & Blackburn (1996a) suggested using visual identification of the lower boundary of the geographical range-body size relationship to identify extinction-prone species; this resulted in thirteen species that are potentially extinction-prone. Main conclusions Similar evolutionary mechanisms appear to operate on body size and other variables related to rarity, even in distantly related taxa.  相似文献   

12.
The rarity of species in a country is usually determined by counting the number of grid cells occupied by those species on a geographical observation grid. In this paper, we present a measure of rarity that is less sensitive to the shape and size of a country. We demonstrate that the distribution of species on a national grid is not monofractal. Consequently, rarity figures cannot be scaled down to a finer grid merely using scale-area plots. We propose a downscaling method that takes into account the non-monofractal distribution of species. Rarity figures have often been published on a scale comprising a limited number of rarity classes. This article finally provides an insight into the degree of accuracy of such classes.  相似文献   

13.
Rarity in the tropics: biogeography and macroecology of the primates   总被引:2,自引:0,他引:2  
Aim To describe rarity and elucidate its biology in a tropical mammalian order, the Primates. Location Africa, Central and South America, Asia, Madagascar. Methods A review of the literature, with some additional analyses using data from the literature. A variety of definitions of rarity are used in order to describe it and to investigate its biology by correlating the degree of rarity with a variety of biological traits indicative of resource use (e.g. size of annual home range), reproductive rate (e.g. birth interval)and specialization (e.g. number of habitat types used). Results Few primate taxa occur outside the tropics, and most taxa are rare (small geographical range size or latitudinal extent, low density or both). Latitudinal extent is narrower at lower latitudes in Africa and Asia, but the potential resultant packing of taxa appears not to explain the taxonomic diversity gradient. Whilst primate species do not show the common, positive density by range size relationship, primate genera show a significant shallow slope, and primate families/subfamilies a strongly positive slope. Rare taxa are specialized, but neither use more resources nor breed more slowly than common taxa. The correlation of rarity and specialization is via geographical range: taxa with small ranges, or small ranges for their density, are specialized, but not taxa at low density. Common taxa are generalized because they consist of more differently specialized subtaxa, not because each subtaxon is generalized. Main conclusions Most primate taxa are rare, in which case most are presumably likely to go extinct. Rare primates are specialized, but do not necessarily use more resources, nor breed more slowly. Specialization as an explanation for rarity appears to work via constriction of range size, not of density. Common primates might be common (large range size) not because subtaxa or individuals are generalized, but because they are composed of more subtaxa. A consequence could be that persistence of even common taxa will depend on conservation of several populations scattered across the taxon's geographical range.  相似文献   

14.
Orchids are known for their species richness, intriguing ecology, rarity and the fact that they grow in almost all terrestrial ecosystems. Although numerous studies about their ecology have been carried out concerning calcareous areas, little is known about orchids that occur in serpentine habitats. The aim of this study was to investigate the ecological preferences of orchids in serpentine and non-serpentine areas on the model of the Valjevo Mountain Range (W Serbia). Niche analysis of orchids was performed using outlying mean index analysis. Data concerning geographical coordinates, altitude, habitat type, inclination, bedrock type, light regime, soil moisture, acidity, nitrogen and temperature were used as explanatory variables. Data of 33 orchid taxa from 407 localities were analysed. The most important gradients that govern orchid distribution were geological bedrock, light regime and temperature. The results have shown that only Anacamptis morio and Gymnadenia conopsea have statistically significantly larger populations on serpentine compared with non-serpentine bedrocks. This study highlights the importance of serpentine habitats as orchid habitats, bearing in mind the occurrence of rare species and species which were found exclusively in serpentine habitats.  相似文献   

15.
Several recent studies have suggested that rare species are not randomly distributed throughout plant taxa. This would appear to apply to North American ferns, which are frequently over-represented on local lists of rare plant species. However, such lists often paint a skewed portrait of the true situation because of our tendency to recognize the rarity of well-known and charismatic species while ignoring that of lesser-known or less-appreciated species. In order to verify if this over-representation of ferns is a real and consistent trend throughout local floras in North America, we used data from what we consider to be the most complete and objective available database: NatureServe Explorer ( http://www.natureserve.org/explorer/ ). We compiled data on total vascular plant species, total fern species, as well as rare vascular plant species and rare fern species for each North American subnational (Canadian province or US state) flora. Rare species were defined as those belonging to one of NatureServe's 'at risk' categories. The null hypothesis that the contribution of rare ferns to total rare species did not differ from their contribution to the total vascular flora was assessed using χ2. Out of 64 subnational floras, we obtained significantly higher values than expected in 28 cases, and significantly lower in only one case. Similar trends hold true for individual fern families. These tendencies could be related to several factors of anthropogenic, biological, climatological, evolutionary, and geographical origin. However, we believe that the main reason is related to scale, namely the geopolitical units at which rarity is often studied. Our results illustrate one of the problems of a parochial approach to conservation, where the perceived rarity of an entire taxon is exaggerated because of the scale at which rarity is addressed.  相似文献   

16.
Ten Indian geographical populations of D. melanogaster were assayed electrophoretically for Adh genic variation. The Indian geographical populations of D. melanogaster revealed significant clinal variation (3 % for 1 d? latitude) at Adh locus and AdhF allelic frequency correlated significantly with increase in latitude. It was suggested that the abundance of secondary alcohols in the southern Indian tropical and humid environment might exert selective pressure favouring higher frequency of AdhS allele. Patterns of ethanol utilization as well as ethanol tolerance were analyzed in larval and adult individuals of six geographical populations of D. melanogaster. Latitudinal variation in ethanol tolerance was observed in D. melanogaster populations from India. The parallel occurrence of latitudinal variation it Adh locus as well as ethanol tolerance in Indian geographical populations of D. melanogaster could be maintained by balancing natural selection varying spatially along the north-south axis of the Indian sub-continent.  相似文献   

17.
The geographical distribution of rarity   总被引:2,自引:0,他引:2  
T. W. Schoener 《Oecologia》1987,74(2):161-173
Summary This paper asks the question: are most species that are censused as rare in particular localities rare throughout most of their geographic ranges, or are they common in substantial portions of their ranges elsewhere? The first alternative is labeled suffusive rarity and the second diffusive rarity. To answer this and similar questions, rarity can be measured as the fraction of censuses from some locality (e.g., a quadrat) in which a species occurs (occurrence rarity), or the relative or absolute abundance of the species averaged over all censuses from some locality (abundance rarity). The question was analyzed for occurrence-rarity data from Australian terrestrial birds distributed over 1° (104-km2) quadrats. The great majority of species that are rare in a particular quadrat are not rare and are often common in a substantial number of other quadrats, i.e., these avian species are much closer to the diffusive than suffusive portion of the rarity continuum. The data also show that 1) the distribution of sizes of geographic ranges, whether breeding or total, is highly skewed, appearing exponential to more concave; 2) species are much rarer in their nonbreeding than breeding ranges; 3) more widespread species, whether breeding or total ranges are considered, tend to occur more rarely in a slightly but significantly greater fraction of their ranges; and 4) hawks and owls, typified by high abundance rarity, show occurrence rarity in a greater fraction of their ranges than the average nonraptorial species. Although continental birds may be especially predilected toward diffusive rarity, the present analysis points to identification of centers of abundance as major ways of preserving those species contributing most to recorded instances of rarity. Similar analyses with other kinds of organisms would be most welcome.  相似文献   

18.
Aim Several studies have found that more accurate predictive models of species’ occurrences can be developed for rarer species; however, one recent study found the relationship between range size and model performance to be an artefact of sample prevalence, that is, the proportion of presence versus absence observations in the data used to train the model. We examined the effect of model type, species rarity class, species’ survey frequency, detectability and manipulated sample prevalence on the accuracy of distribution models developed for 30 reptile and amphibian species. Location Coastal southern California, USA. Methods Classification trees, generalized additive models and generalized linear models were developed using species presence and absence data from 420 locations. Model performance was measured using sensitivity, specificity and the area under the curve (AUC) of the receiver‐operating characteristic (ROC) plot based on twofold cross‐validation, or on bootstrapping. Predictors included climate, terrain, soil and vegetation variables. Species were assigned to rarity classes by experts. The data were sampled to generate subsets with varying ratios of presences and absences to test for the effect of sample prevalence. Join count statistics were used to characterize spatial dependence in the prediction errors. Results Species in classes with higher rarity were more accurately predicted than common species, and this effect was independent of sample prevalence. Although positive spatial autocorrelation remained in the prediction errors, it was weaker than was observed in the species occurrence data. The differences in accuracy among model types were slight. Main conclusions Using a variety of modelling methods, more accurate species distribution models were developed for rarer than for more common species. This was presumably because it is difficult to discriminate suitable from unsuitable habitat for habitat generalists, and not as an artefact of the effect of sample prevalence on model estimation.  相似文献   

19.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   

20.
Aim Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data. Location Europe, North America and South America. Methods The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with pre‐defined distributions and amounts of niche overlap to evaluate several ordination and species distribution modelling techniques for quantifying niche overlap. We illustrate the approach with data on two well‐studied invasive species. Results We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographical space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results. Main conclusions The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate for studying niche differences between species, subspecies or intra‐specific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intra‐specific lineage has changed over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号