首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Deforestation and habitat loss are widely expected to precipitate an extinction crisis among tropical forest species. Humans cause deforestation, and humans living in rural settings have the greatest impact on extant forest area in the tropics. Current human demographic trends, including slowing population growth and intense urbanization, give reason to hope that deforestation will slow, natural forest regeneration through secondary succession will accelerate, and the widely anticipated mass extinction of tropical forest species will be avoided. Here, we show that the proportion of potential forest cover remaining is closely correlated with human population density among countries, in both the tropics and the temperate zone. We use United Nations population projections and continent‐specific relationships between both total and rural population density and forest remaining today to project future tropical forest cover. Our projections suggest that deforestation rates will decrease as population growth slows, and that a much larger area will continue to be forested than previous studies suggest. Tropical forests retracted to smaller areas during repeated Pleistocene glacial events in Africa and more recently in selected areas that supported large prehistoric human populations. Despite many caveats, these projections and observations provide hope that many tropical forest species will be able to survive the current wave of deforestation and human population growth. A strategy to preserve tropical biodiversity might include policies to improve conditions in tropical urban settings to hasten urbanization and preemptive conservation efforts in countries with large areas of extant forest and large projected rates of future human population growth. We hope that this first attempt inspires others to produce better models of future tropical forest cover and associated policy recommendations.  相似文献   

2.
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

3.
Tropical dry forests occupy more area and are more endangered than rainforests, yet their regeneration ecology has received less study and is consequently poorly understood. We recorded the flowering and fruiting phenology of a tropical dry forest in Jamaica over a period of 26 mo within ten 15 × 15‐m plots. Community‐wide recruitment reached a maximum in the wet season, whereas no recruitment occurred during the dry season. We observed a unimodal peak in rainfall and fruit production, and the periodicity and intensity of seed production were significantly correlated with rainfall seasonality (the optimal time for germination). Flowering at the community and system levels lagged behind a significant increase and subsequent decrease in rainfall by 7 and 3 mo, respectively, indicating that the dominant factor controlling flowering periodicity is the passage of the major (4‐mo long) rainy season and changes in soil moisture conditions. Fruiting lagged behind flowering by 2 mo and a significant increase in fruiting occurred 2 mo prior to a significant increase in rainfall. At the population level, a correspondence analysis identified a major dichotomy in the patterns of flowering and fruiting between species and indicated two broad species groups based on their time of peak fruiting and the number of times they were in fruit. These were either individuals which were usually in peak fruit 1–2 mo prior to the start of the major rainy season or those that were in fruit more or less continuously throughout the year with no peak fruiting time. This study supports the view that seasonal variation in rainfall and hence soil water availability constitutes both the proximate and the ultimate cause of flowering periodicity in tropical dry forests.  相似文献   

4.
5.
Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.  相似文献   

6.
Species diversity–environmental heterogeneity (D–EH) and species diversity–productivity (D–P) relationships have seldom been analyzed simultaneously even though such analyses could help to understand the processes underlying contrasts in species diversity among sites. Here we analyzed both relationships at a local scale for a highly diverse tropical dry forest of Mexico. We posed the following questions: (1) are environmental heterogeneity and productivity related?; (2) what are the shapes of D–EH and D–P relationships?; (3) what are individual, and interactive, contributions of these two variables to the observed variance in species diversity?; and (4) are patterns affected by sample size, or by partitioning into average local diversity and spatial species turnover? All trees (diameter at breast height ≥5 cm) within twenty‐six 0.2‐ha transects were censused; four environmental variables associated with water availability were combined into an environmental heterogeneity index; aboveground standing biomass was used as a productivity estimator. Simple and multiple linear and nonlinear regression models were run. Environmental heterogeneity and productivity were not correlated. We found consistently positive log‐linear D–EH and D–P relationships. Productivity explained a larger fraction of among‐transect variance in species diversity than did environmental heterogeneity. No effects of sample size were found. Different components of diversity varied in sensitivity to environmental heterogeneity and productivity. Our results suggest that species' differentiation along water availability gradients and species exclusion at the lowest productivity (driest) sites occur simultaneously, independently, and in a scale‐dependent fashion on the tree community of this forest.  相似文献   

7.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

8.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

9.
Fundamental to our understanding of the ecology of animal communities in the tropics is knowledge of the effect of seasonal changes in the abundance of food sources in consumer diets. We determined stable‐isotope composition (13C/12C and 15N/14N) in whole blood of 14 resident avian species in a tropical dry forest to quantify the origin of their assimilated protein. We used a probabilistic approach (IsoSource) to estimate the relative contribution of C3 plants, CAM‐C4 plants, C3 insects, and CAM‐C4 insects during the dry and rainy seasons. IsoSource iteratively creates each possible combination of source contribution and produces a distribution of all feasible combinations that adequately predict the observed isotopic signature of the consumer. Granivore–frugivores and granivore–frugivore–insectivores were modeled as predominantly dependent upon plants whereas insectivorous birds were modeled to derive protein almost exclusively from insects. Between these extremes there were several species using mixed diets such as insectivore–frugivores or insectivore–granivores. In most species, virtually all assimilated food was of C3 origin with the exception of Ruddy Ground‐Doves (Columbina talpacoti) in which CAM or C4 plants contributed significantly. Seasonal changes in relative food source contribution were followed in eight species of birds. Of these species, White‐tipped Doves (Leptotila verreauxi), Grayish Saltators (Saltator coerulescens), and Social Flycatchers (Myiozetetes similis) increased their use of insects in the rainy season, in contrast to Great Kiskadees (Pitangus sulphuratus), which decreased their use of insects. Our study suggests that that diverse strategies are used by various avian species to obtain dietary proteins within seasonal habitats.  相似文献   

10.
Ellen Andresen 《Biotropica》2005,37(2):291-300
Dung beetles are important components of most terrestrial ecosystems. In tropical rain forests, dung beetle communities can be very rich in number of species and individuals, and they are known to be useful bioindicators of habitat disturbance. In contrast, very little is known about the organization of dung beetle communities in tropical dry forests. The aim of this study was to describe in detail the dung beetle community of a Mexican tropical dry forest and to assess the relative importance of rainfall seasonality and forest structure in affecting the temporal and spatial dynamics of this community. Dung beetles were captured with pitfall traps at the beginning of the rainy season, the middle of the rainy season, and the middle of the dry season, in two distinct forest types: deciduous forest (DF) and semideciduous forest (SDF) at the Estación de Biología Chamela. Both rainfall seasonality and forest structure affected the community organization of dung beetles. During both rainy periods, 14 species were captured, but only three during the dry season. Dung beetles captured during the dry season were only found in the SDF. When comparing the beginning and the middle of the rainy season, differences in abundance and guild structure were also observed between both periods and between forest types, but these differences were much less pronounced.  相似文献   

11.
12.
13.
Tropical dry forests (TDFs) host a large diversity of tree species but little is known of potential mechanisms that contribute to its maintenance. Given the paramount importance of water availability in such forests, tree species would be expected to show nonrandom patterns along water availability gradients, as well as differential individual species responses. In this work we explored whether that was true for 50 dominant tree species. Within a total area of 5.2 ha, divided into 26 transects each with ten 20 × 10 m plots, we registered presence–absence of these tree species with diameter at breast height ≥5 cm. We assessed the response of trees to four environmental variables differentially related to water availability in three steps: (1) identifying the shape of the response to individual environmental variables, (2) testing for artifacts in previous patterns due to spatial autocorrelation of presence–absence, and (3) identifying the environmental variable or combination of variables that best explained the pattern. We then classified the species with respect to their probability of occurrence along the gradient, and explored which components of the water cycle were likely to be driving the observed patterns. We found that 14 species were generalists, 16 drought tolerant, 9 intermediate, 3 water demanding and 8 showed mixed responses. Lateral flow and access to ground water most likely underlie such patterns. Our results confirm the key role played by water availability in tree species distribution. Water‐related niche differentiation seems to be crucial for maintaining the high diversity of this TDF. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

14.
Recent studies suggest that tropical tree species exhibit low inbreeding and high gene dispersal levels despite the typically low density of conspecifics in tropical forests. To examine this, we undertook a study of pollen gene dispersal and mating system of two Amazonian tree species. We analyzed 341 seeds from 33 trees at four microsatellite loci in a Carapa guianensis population from Brazil, and 212 seeds from 22 trees at four microsatellite loci in a Sextonia rubra population from French Guiana. Differentiation of allele frequencies among the pollen pool of individual trees was ΦFT= 0.053 (95% CI: 0.027–0.074) for C. guianensis and ΦFT= 0.064 (95% CI: 0.017–0.088) for S. rubra. The mean pollen dispersal distances were estimated at 69–355 m for C. guianensis , and 86–303 m for S. rubra , depending on the pollen dispersal model and the estimate of reproductive tree density used. The multi-locus outcrossing rate was estimated at 0.918 and 0.945, and the correlation of paternity at 0.089 and 0.096, for C. guianensis and S. rubra , respectively, while no significant levels of biparental inbreeding were detected. Comparing trees with high and low local density of conspecifics, we found no evidence for differences in inbreeding levels. The results are discussed within the framework of the emerging picture of the reproductive biology of tropical forest trees.  相似文献   

15.
用巴拿马50 hm2森林动态监测样地内直径≥1 cm的树种资料,分析了该样地树种多度(个体数)和丰富度(物种数)及其方差和变异系数在6个取样尺度(5 m×5 m,10 m×10 m,20 m×20 m,25 m×25 m,50 m×50 m,100 m×100 m)的变化规律.结果显示:(1)由于多度的可加性,不同取样尺度在样地内树种多度的变化表现出一致性;随取样尺度的增加,多度方差呈线性增加,而变异系数呈线性减小.(2)丰富度随取样尺度的变化较为复杂,随取样尺度的增加,丰富度方差呈非线性变化,在取样尺度为25 m×25 m时方差最大;变异系数随取样尺度的增加而呈线性减小.研究表明,大尺度的多度值可以由小尺度的多度值通过外推法估计,而丰富度却不能,在生物多样性的保护和管理中不能简单地从一个取样尺度的生物丰富度推测另一个取样尺度丰富度.  相似文献   

16.
海南霸王岭热带山地雨林森林循环与树种多样性动态   总被引:19,自引:0,他引:19  
通过对海南岛霸王岭热带山地雨林的调查 ,研究了热带山地雨林树种多样性特征随森林循环的动态变化规律。结果表明 :( 1 )热带山地雨林森林循环不同阶段斑块在森林景观中所占的面积比例分别是 :林隙阶段 ( G)占 38.5 0 % ,建立阶段 ( B)占 2 8.5 0 % ,成熟阶段 ( M)占 2 7.0 0 % ,衰退阶段 ( D)占 6 .0 0 %。 ( 2 )热带山地雨林中乔木树种的密度随森林循环的变化趋势是由 G→B→M呈现出逐渐增加的趋势 ,以成熟阶段达到最大 ,而到衰退阶段又趋于下降。灌木树种则表现出 G阶段斑块的密度最大 ,B阶段的最小 ,从 B到 M有所增加 ,到 D又稍有下降。 ( 3)热带山地雨林中不同高度级和不同径级的树木的密度在森林循环的不同阶段表现出不同的增减趋势 ,其随森林循环过程呈现出的动态变化可能与不同阶段斑块内的空间、环境及物种生物学特性有关。 ( 4 )热带山地雨林中树木的平均胸径、平均高、平均胸高断面积、平均单株材积随森林循环过程呈现出不断增加的趋势 ,其中平均胸径和平均高随森林循环的变化较为平缓 ,而平均胸高断面积和平均单株材积之变化较为陡急。 ( 5 )热带山地雨林森林循环不同阶段的物种多样性指数不同 ,其中 G和 B阶段的物种丰富度和多样性指数值较接近 ,M阶段的物种丰富度达到最大 ,D阶段则最小。  相似文献   

17.
We compared vegetation structure and species richness across a 56‐yr chronosequence of six replicated age classes of dry tropical forest on the island of Providencia, Colombia, in the Southwest Caribbean. Stand age classes were determined using sequential, orthorectified panchromatic aerial photos acquired between 1944 and 1996 and Landsat 7 ETM + satellite imagery from 2000. Along the chronosequence we established 59 plots of 2 × 50 m (0.01 ha) to document changes in species richness, basal area, tree height, stem density, and sprouting ability. All woody trees and shrubs >2.5 cm diameter at breast height (DBH) were censused and measured. Although woody species density reached a peak in stands from 32 to 56 yr old, rarefaction analysis showed that species richness increased linearly with stand age and was highest in stands 56 yr old or greater. Nonparametric, abundance‐based estimators of species richness also showed positive and linear associations with age. Basal area and mean tree height were positively associated with age since abandonment, while sprouting ability showed a negative relationship. Our results indicate rapid recovery of woody species richness and structural characteristics along this tropical dry forest chronosequence.  相似文献   

18.
To understand the mechanisms driving species diversity is central to community ecology. Here, we explored if habitat partitioning is associated with a species‐rich ectoparasite community in small rodents from a tropical dry forest in western Mexico. We trapped 199 mice in three 0.5 ha‐plots from eight small rodent species for every two months, from July 2011 to April 2012, and collected their ectoparasites. We identified 17 species of mites, two sucking lice species, two phoretic species, and one commensal species. The most abundant ectoparasite species was Steptolaelaps liomydis, representing 42 percent of all ectoparasites collected; seven ectoparasite species had < 10 individuals. Eighteen ectoparasite species (of 22 species) were collected from the most abundant rodent Liomys pictus. C‐score and the number of checkerboard species pairs were significantly higher against a random expectation. Ectoparasite species in L. pictus mice showed host microhabitat partitioning; Fahrenholzia ehrlichi and Fahrenholzia texana were found only in the anterior dorsal area, Ornithonysus sp. occurred along the dorsal part, Ixodes species were restricted to the ears, and Steptolaelaps liomydis was found throughout the body. We also identified ectoparasite communities with distinct species composition in two rodent species that use contrasting macrohabitats (L. pictus, strictly terrestrial; Peromyscus perfulvus, mostly arboreal). The remaining and low abundant rodent species showed a species‐poor ectoparasite community composition. We conclude that habitat partitioning at both macro and microhabitat scales appeared to characterize the species‐rich ectoparasite community. Conversely, most rodent host species with low abundances showed a species‐poor ectoparasite community.  相似文献   

19.
We determined the effect of forest fragmentation on the nectarivorous Colima long‐nosed bat (Musonycteris harrisoni) by observing foraging behavior of this species in disturbed and undisturbed forests on the flowers of Ceiba grandiflora (Bombacaceae). The study was conducted in the area of the Chamela‐Cuixmala Biosphere Reserve in Jalisco, Mexico. Musonycteris harrisoni was observed visiting flowers during six nights (88 visits), exclusively in undisturbed forest. This species feeds on the nectar and serves as a pollinator of C. grandiflora.  相似文献   

20.
Edge creation has a pronounced influence on the understory vegetation, but the effects of edges on seedling species recruitment are still poorly understood. In Central Amazonia, 9–19 years after fragmentation, we recorded species richness and net seedling recruitment rate in 1 ha blocks exposed to none, one, or multiple edges within forest fragments. One‐hectare blocks were located in the center (no edge), the edge (one edge), the corners (two edges) of 10 and 100 ha fragments, and in a 1 ha fragment (four edges). In 1991, we counted all tree seedlings 5–100 cm tall found within permanent 1 m2 plots located within the 1 ha blocks. In May 1993, we manually removed all seedlings that were smaller than 1 m tall from the permanent plots. Six years and five months later (October 1999), all new seedlings recruited into the plots were counted and classified into distinct morphospecies. Species richness of recruited seedlings, scaled by total seedling density, declined from the center to the edge, the corner blocks, and then to the 1 ha fragment. Overall, the four‐edged, 1 ha fragment had the poorest species richness and the non‐edged 100 ha central block the highest. The total number of recruited individuals was 40 percent less than that previously present, with the 100 ha corner having the lowest recruitment. Pairwise comparisons showed that species similarity was related to edge number for the 100 and 1 ha fragments. Species rank/abundance curves showed that a subset of species was common in all blocks within the fragments, and that the 100 ha center held more rare species than any other 1 ha block. This study demonstrated that, in a given fragment patch, the number of tree seedling species recruited varied inversely with the number of edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号