首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2019,21(4):433-443
Critical limb ischemia, a severe manifestation of peripheral artery disease, is emerging as a major concern in aging societies worldwide. Notably, cell-based gene therapy to induce angiogenesis in ischemic tissue has been investigated as treatment. Despite many studies demonstrating the efficacy of this approach, better therapies are required to prevent serious sequelae such as claudication, amputation and other cardiovascular events. We have now established a simplified method to enhance the effects of therapeutic transgenes by selecting for and transplanting only transduced cells. Herein, mesenchymal stromal cells were transfected to co-express vascular endothelial growth factor as angiogenic factor and enhanced green fluorescent protein as marker. Transfected cells were then collected using flow cytometry based on green fluorescence and transplanted into ischemic hind limbs in mice. Compared with unsorted or untransfected cells, purified cells significantly improved blood perfusion within 21days, suggesting that transplanting only cells that overexpress vascular endothelial growth factor enhances therapeutic angiogenesis. Importantly, this approach may prove to be useful in cell-based gene therapy against a wide spectrum of diseases, simply by replacing the gene to be delivered or the cell to be transplanted.  相似文献   

2.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

3.
Reduced perfusion to the placenta in early pregnancy is believed to be the initiating factor in the development of preeclampsia, triggering local ischemia and systemic vascular hyperresponsiveness. This sequence of events creates a predisposition to the development of altered vascular function and hypertension. This study was designed to determine the influence of placental insufficiency on the responsiveness of mesenteric resistance arteries in an animal model of preeclampsia. Placental insufficiency was induced by reduction in uteroplacental perfusion pressure (RUPP) in experimental Sprague-Dawley rat dams. The uterine branches of the ovarian arteries and the abdominal aortae of pregnant rats were surgically constricted on gestational Day 14. Dams in the control group underwent a sham procedure. Rats were euthanized on gestational Day 20, followed by removal of the small intestine and adjacent mesentery. First-order mesenteric resistance arteries were mounted on a small vessel wire myograph and challenged with incremental concentrations of vasoconstrictors and vasorelaxants. Mesenteric arteries in dams with placental insufficiency demonstrated an increased maximal tension to phenylephrine (7.15 +/- 0.15 vs. 5.4 +/- 0.27 mN/mm, P < 0.001); potassium chloride at 60 mM (3.43 +/- 0.11 vs. 2.77 +/- 0.14 mN/mm, P < 0.01) and 120 mM (3.92 +/- 0.18 vs. 2.97 +/- 0.16 mN/mm, P < 0.01); and angiotensin II (2.59 +/- 0.42 vs. 1.51 +/- 0.22 mN/mm, P < 0.05). Maximal relaxation to endothelium-dependent relaxants acetylcholine and calcium ionophore (A23187) was not significantly reduced. Data suggest that placental insufficiency leads to hyperresponsiveness to vasoconstrictor stimuli in mesenteric arteries.  相似文献   

4.
Although insulin-like growth factor 1 (IGF-1) has been associated with retinopathy, proof of a direct relationship has been lacking. Here we show that an IGF-1 receptor antagonist suppresses retinal neovascularization in vivo, and infer that interactions between IGF-1 and the IGF-1 receptor are necessary for induction of maximal neovascularization by vascular endothelial growth factor (VEGF). IGF-1 receptor regulation of VEGF action is mediated at least in part through control of VEGF activation of p44/42 mitogen-activated protein kinase, establishing a hierarchical relationship between IGF-1 and VEGF receptors. These findings establish an essential role for IGF-1 in angiogenesis and demonstrate a new target for control of retinopathy. They also explain why diabetic retinopathy initially increases with the onset of insulin treatment. IGF-1 levels, low in untreated diabetes, rise with insulin therapy, permitting VEGF-induced retinopathy.  相似文献   

5.
目的:对Beitz大鼠后肢穿刺伤疼痛模型进行改良.方法:雄性SD大鼠35只,200±20g.将其随机分为假手术组(C)5只,Beitz模型组(BM),改良Beitz模型组(IM)各15只.按照Beitz大鼠后肢穿刺伤模型要求制作,改良Beitz模型组左小腿外侧距膝关节1cm处做纵行切口长1.0cm,并垂直刺入肌肉达对侧皮肤.其余步骤同于Beitz模型.造模后分别测定各实验组动物的继发机械痛阈、继发热痛阈和脊髓背角Fos阳性蛋白的积分光密度(IOD),并进行比较.结果:改良后的动物模型也可反应出急性疼痛的演化过程,较原有模型敏感度提高.结论:改良后的Beitz模型组可以模拟急性疼痛的发生发展过程,而且适合对局部镇痛方法的镇痛效果进行评价.  相似文献   

6.
7.
Constitutive vascular endothelial growth factor (VEGF) gene expression systems have been extensively used to treat peripheral arterial diseases, but most of the results have not been satisfactory. In this study, we designed a plasmid vector with a hypoxia-responsive element sequence incorporated into it with the phiC31 integrative system (pVHAVI) to allow long-term VEGF gene expression and to be activated under hypoxia. Repeated activations of VEGF gene expression under hypoxia were confirmed in HEK293 and C2C12 cells transfected with pVHAVI. In limb ischemic mice, the local administration of pVHAVI promoted gastrocnemius mass and force recovery and ameliorated limb necrosis much better than the group treated with hypoxia-insensitive vector, even this last group had produced more VEGF in muscle. Histological analyses carried out after four weeks of gene therapy showed increased capillary density and matured vessels, and reduced number of necrotic cells and fibrosis in pVHAVI treated group. By our study, we demonstrate that the presence of high concentration of VEGF in ischemic tissue is not beneficial or is less beneficial than maintaining a lower but sufficient and long-term concentration of VEGF locally.  相似文献   

8.
The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.  相似文献   

9.
10.
Microsurgical procedures such as free tissue transfer or replantations of amputated digits involve an obligatory ischemic period leading to regional tissue oedema, rhabdomyolysis, systemic acidosis, hypercalcemia and multiple organ dysfunction syndrome reflecting ischemia-reperfusion (I/R) injury. Since nitroxide stable radicals act as antioxidants their potential protective effects were tested. Anaesthetized Sabra rats were subjected to regional ischemia of the hind limb for 2 h using a tourniquet. Upon reperfusion rats were injected with 4-OH-2,2,6,6-tetramethylpiperidine-1-oxyl (TPL). Systemic I/R-induced damage was assessed by sampling blood for differential count, lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) serum levels. Regional injury was evaluated by analysing excised muscle samples for oedema (tissue water content) and inflammatory infiltrate (number of cell nuclei in histomorphometric analysis). I/R-induced changes of biomarkers reflecting systemic damage peaked about 8 h following the start of reperfusion and fully disappeared as the biomarkers relaxed to their pre-ischemic values after 24 h. TPL facilitated the recovery of some of these parameters and partially affected release of cellular CPK and LDH. The parameters of I/R-induced regional tissue injury did not demonstrate any recovery and were not inhibited by TPL.  相似文献   

11.
Microsurgical procedures such as free tissue transfer or replantations of amputated digits involve an obligatory ischemic period leading to regional tissue oedema, rhabdomyolysis, systemic acidosis, hypercalcemia and multiple organ dysfunction syndrome reflecting ischemia-reperfusion (I/R) injury. Since nitroxide stable radicals act as antioxidants their potential protective effects were tested. Anaesthetized Sabra rats were subjected to regional ischemia of the hind limb for 2 h using a tourniquet. Upon reperfusion rats were injected with 4-OH-2,2,6,6-tetramethylpiperidine-1-oxyl (TPL). Systemic I/R-induced damage was assessed by sampling blood for differential count, lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) serum levels. Regional injury was evaluated by analysing excised muscle samples for oedema (tissue water content) and inflammatory infiltrate (number of cell nuclei in histomorphometric analysis). I/R-induced changes of biomarkers reflecting systemic damage peaked about 8 h following the start of reperfusion and fully disappeared as the biomarkers relaxed to their pre-ischemic values after 24 h. TPL facilitated the recovery of some of these parameters and partially affected release of cellular CPK and LDH. The parameters of I/R-induced regional tissue injury did not demonstrate any recovery and were not inhibited by TPL.  相似文献   

12.
13.
It is well known that the mechanisms of occurrence of orthostatic intolerance induced by exposure to microgravity deal with multiple factors including alterations of arteries. In the previous works, the diminished contractile responsiveness of abdominal aorta and hind body medium-sized conduit arteries, mesenteric artery and femoral artery, were observed in tail-suspended rats, and the data showed that the femoral artery have subjected to the greatest changes. These results suggested that the vasoreactivity of resistance vessels might be affected by the real or simulated microgravity. Since the arterioles are the main site of peripheral resistance and of its regulation. Therefore, changes in responsiveness of arteriolar network, especially in the lower/hind body region, would be of primary importance in the genesis of postflight orthostatic intolerance. The aim of the present work was to examine whether simulated weightlessness may lead to an impairment in vasoconstrictor responsiveness in hind body vascular beds.  相似文献   

14.
Regulation of endothelial cell apoptosis is a critical modulator of normal and pathological angiogenesis. In this study, we examined the role of the protein kinase Akt/PKB in endothelial cell survival in response to growth factor and matrix attachment signals. Vascular endothelial growth factor(VEGF)-induced cytoprotection of endothelial cell monolayers correlated with the wortmannin-sensitive induction of Akt activity. Transfection of an adenovirus expressing a dominant-negative Akt mutant decreased endothelial cell viability in the presence of VEGF. Conversely, adenoviral transduction of wild-type Akt facilitated the cell survival effects of VEGF, whereas transduction of constitutively active Akt conferred endothelial cell survival in the absence of VEGF. Constitutively active Akt also conferred survival to endothelial cells in suspension culture, whereas stimulation with VEGF did not. In suspension cultures, VEGF stimulation was unable to activate Akt, and Akt protein levels were repressed in cells undergoing anoikis. These data suggest that cross-talk between growth factor- and anchorage-dependent signaling pathways are essential for Akt activation and endothelial cell survival.  相似文献   

15.
Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1α-dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo. Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF-κB/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1α-dependent VEGF expression and angiogenesis in human synovial fibroblasts.Osteoarthritis (OA) refers to clinical syndrome of joint pain accompanied by varying degrees of functional limitation and reduced quality of life.1 Cause of the OA is unclear, although obesity, aging, sex, genetic factors, and injury have been associated with increased risk of OA.2 Development and progression of OA are now believed to involve synovial inflammation even in early stages of the disease.3 Biochemical mediators like cytokines, chemokines, and growth factors were found in OA synovial fibroblasts (OASFs) that affect cellular functions of knee joints. These mediators promote inflammation, cartilage degradation, and neovascularization via activation of angiogenetic factors like vascular endothelial growth factor (VEGF),4,5 reportedly secreted from mechanically overloaded chondrocytes6 and in OA joints in vivo.7 VEGF also affects chondrocytic metabolism, leading to release of matrix metalloproteinases that degrade cartilage matrix.8 Anti-VEGF polyclonal antibody markedly attenuated disease severity in arthritis,9 indicating anti-angiogenesis as novel OA treatment.Connective tissue growth factor (CTGF, a.k.a. CCN2) is a member of the CCN family, secreted multifunctional proteins that contain high levels of cysteine. It has been proven associated with several biological functions such as fibrosis, tissue remodeling, and tumorgenesis even to OA.10 The mRNA expression of CTGF has been upregulated adjacent to areas of cartilage surface damage, and present in chondro-osteophytes.11 In animal model, CTGF overexpression in synovial lining of mouse knee joints results in reversible synovial fibrosis and cartilage damage.12 Both plasma and synovial fluid CTGF concentration in OA patients were correlated with radiographic severity and could be useful for monitoring progression of OA.13 We previously indicated CTGF enhancing IL-6 and MCP-1 expression and promoting inflammation in OASFs,14,15 meaning CTGF contributes to pathogenesis of OA.The small, noncoding microRNAs (miRNAs) transcribed from DNA are 18–24 nucleotides in length, modulating targeted gene expression via either translational repression or mRNA cleavage.16 It is recently reported that miRNA expression was associated with well-defined clinical pathological features and disease outcomes;17,18 miRNAs also have been linked with OA pathogenesis, especially for expression of genes encoding catabolic factors like matrix metalloproteinases and ADAMTS.19 Many evidences indicated that miR-210 as angiogenic miRNA.20, 21, 22 In addition, overexpression of miR-210 can stimulate formation of capillary-like structures in vitro when cells are cultured in Matrigel.23 However, the exact etiological mechanism of miR-210 in angiogenesis and OA pathogenesis is largely unknown.Angiogenesis is essential for the development, growth, and progression of OA.24 VEGF, a potent angiogenic factor, is pivotal in OA pathogenesis.7 CTGF is cited as promoting inflammatory cytokine release during OA;12 its role in angiogenesis is implied in many cell types,25,26 but its signal pathway in VEGF production and angiogenesis in synovial fibroblasts has not been extensively studied. We explored intracellular signal pathway in CTGF-induced VEGF production in OASFs and found CTGF activating PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathway to upregulate miR-210 expression and contributing to inhibit GPD1L expression and prolyl hydroxylases 2 (PHD2) activity as well as trigger HIF-1α-dependent VEGF expression and angiogenesis in human OASFs.  相似文献   

16.
目的:探讨川芎及川芎中起活血作用的两种主要药效成分(阿魏酸钠和川芎嗪)对后肢去负荷大鼠比目鱼肌萎缩的影响与作用。方法:尾部悬吊法建立大鼠废用性肌萎缩模型,用免疫组化技术及血液流变学方法观察药物对比目鱼肌各项指标的影响。结果:与后肢去负荷大鼠相比①高剂量的阿魏酸钠和川芎嗪使比目鱼肌I型肌纤维横截面积分别增加了37.3%和39.4%(P〈0.05);②三种药物均能明显抑制梭外肌纤维MHCII表达水平的升高(P〈0.01);③使肌梭内核袋2纤维MHCII的表达由阳性转变为阴性;④并能明显降低低切变率下的全血粘度。结论:川芎及两种主要药效成分阿魏酸钠与川芎嗪均能不同程度地对抗废用性肌萎缩的发生,以高剂量川芎嗪与阿魏酸钠的药效最为明显。  相似文献   

17.
18.
Shibuya M 《BMB reports》2008,41(4):278-286
Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.  相似文献   

19.
Fan B  Wang YX  Yao T  Zhu YC 《生理学报》2005,57(1):13-20
血管内皮细胞中血管内皮生长因子(vascular endothelial growthfactor,VEGF)的合成增加在促进血管新生的过程中起着非常重要的作用.然而低氧诱导VEGF分泌的细胞内信号转导机制还不是很清楚.人脐静脉内皮细胞系(ECV304)在低氧或常氧的状态下培养12~24 h后分别用实时定量PCR和Western blot的方法来检测VEGF mRNA的表达及ERK1/2和p38激酶的磷酸化水平.分泌到培养液中的VEGF蛋白用酶联免疫吸附(ELISA)的方法来检测.业已报道,ERK的抑制剂PD98059能够抑制低氧诱导的VEGF基因的表达,根据这个报道,我们发现在低氧情况下,ECV304细胞的ERK1/2磷酸化水平增高以及VEGF的合成增加等这些变化也能被PD98059所抑制.本次实验的新发现是p38激酶的激活在低氧诱导VEGF合成增加中的作用.p38激酶的抑制剂SB202190能抑制低氧诱导的VEGF合成增加.这些数据首次直接证实了p38激酶在低氧诱导人内皮细胞分泌VEGF增加过程中的作用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号