首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized and displayed potent Nav1.7 inhibitory activity and moderate selectivity over Nav1.5. The syntheses, structure–activity relationships, and selected pharmacokinetic data of these analogs are described. Compound 41 displayed anti-nociceptive efficacy in the rat CFA pain model at 100 mpk oral dosing.  相似文献   

3.
4.
海南捕鸟蛛毒素 IV(HNTX IV)是从中国捕鸟蛛Seleconosmiahainana粗毒中分离得到的一种肽类神经毒素 ,在成年大鼠背根神经节 (DRG)细胞上观察了该毒素对电压门控钠通道的影响。在全细胞膜片钳条件下 ,HNTX IV能明显抑制哺乳动物神经性河豚毒敏感型 (TTX S)钠电流 ,但不影响河豚毒不敏感型 (TTX R)钠电流。HNTX IV对DRG细胞TTX S钠电流的抑制作用具有浓度依从性 ,其有效半抑制浓度 (IC50 )为 44 .6nmol/L。该毒素不影响DRG钠电流的激活与失活时间特征 ,但能导致钠通道的半数稳态失活电压向超极化方向漂移约 10 .1mV。结果表明HNTX IV是一种新型的蜘蛛毒素 ,其影响电压门控钠通道的机制可能有别于那些结合于通道位点 3来延缓钠电流失活时间特征的蜘蛛毒素如δ 澳洲漏斗网蛛毒素、μ 美洲漏斗网蛛毒素I VI等。  相似文献   

5.
Nine different voltage-gated sodium channel isoforms are responsible for inducing and propagating action potentials in the mammalian nervous system. The Nav1.7 channel isoform plays an important role in conducting nociceptive signals. Specific mutations of this isoform may impair gating behavior of the channel resulting in several pain syndromes. In addition to channel mutations, similar or opposite changes in gating may be produced by spider and scorpion toxins binding to different parts of the voltage-gated sodium channel. In the present study, we analyzed the effects of the α-scorpion toxin OD1 and 2 synthetic toxin analogs on the gating properties of the Nav1.7 sodium channel. All toxins potently inhibited channel inactivation, however, both toxin analogs showed substantially increased potency by more than one order of magnitude when compared with that of wild-type OD1. The decay phase of the whole-cell Na+ current was substantially slower in the presence of toxins than in their absence. Single-channel recordings in the presence of the toxins revealed that Na+ current inactivation slowed due to prolonged flickering of the channel between open and closed states. Our findings support the voltage-sensor trapping model of α-scorpion toxin action, in which the toxin prevents a conformational change in the domain IV voltage sensor that normally leads to fast channel inactivation.  相似文献   

6.
The stinging hairs of plants from the family Urticaceae inject compounds that inflict pain to deter herbivores. The sting of the New Zealand tree nettle (Urtica ferox) is among the most painful of these and can cause systemic symptoms that can even be life-threatening; however, the molecular species effecting this response have not been elucidated. Here we reveal that two classes of peptide toxin are responsible for the symptoms of U. ferox stings: Δ-Uf1a is a cytotoxic thionin that causes pain via disruption of cell membranes, while β/δ-Uf2a defines a new class of neurotoxin that causes pain and systemic symptoms via modulation of voltage-gated sodium (NaV) channels. We demonstrate using whole-cell patch-clamp electrophysiology experiments that β/δ-Uf2a is a potent modulator of human NaV1.5 (EC50: 55 nM), NaV1.6 (EC50: 0.86 nM), and NaV1.7 (EC50: 208 nM), where it shifts the activation threshold to more negative potentials and slows fast inactivation. We further found that both toxin classes are widespread among members of the Urticeae tribe within Urticaceae, suggesting that they are likely to be pain-causing agents underlying the stings of other Urtica species. Comparative analysis of nettles of Urtica, and the recently described pain-causing peptides from nettles of another genus, Dendrocnide, indicates that members of tribe Urticeae have developed a diverse arsenal of pain-causing peptides.  相似文献   

7.
In cultured bovine adrenal chromaffin cells, chronic (> or = 24 h) treatment with lysophosphatidic acid (LPA) augmented veratridine-induced 22Na+ influx via Na(v)1.7 by approximately 22% (EC(50) = 1 nmol/L), without changing nicotine-induced 22Na+ influx via nicotinic receptor-associated channel. LPA enhanced veratridine (but not nicotine)-induced 45Ca2+ influx via voltage-dependent calcium channel and catecholamine secretion. LPA shifted concentration-response curve of veratridine for 22Na+ influx upward, without altering the EC(50) of veratridine. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced 22Na+ influx by twofold in non-treated and LPA-treated cells. Whole-cell patch-clamp analysis showed that peak Na+ current amplitude was greater by 39% in LPA (100 nmol/L for 36 h)-treated cells; however, I-V curve and steady-state inactivation/activation curves were comparable between non-treated and LPA-treated cells. LPA treatment (> or = 24 h) increased cell surface [3H]saxitoxin binding by approximately 28%, without altering the K(d) value; the increase was prevented by cycloheximide, actinomycin D, or Ki16425, dioctylglycerol pyrophosphate 8:0 (two inhibitors of LPA(1) and LPA3 receptors), or botulinum toxin C3 (Rho inhibitor), Y27632 (Rho kinase inhibitor), consistent with LPA(1) receptor expression in adrenal chromaffin cells. LPA raised Nav1.7 mRNA level by approximately 37%. Thus, LPA-LPA(1) receptor-Rho/Rho kinase pathway up-regulated cell surface Nav1.7 and Nav1.7 mRNA levels, enhancing veratridine-induced Ca2+ influx and catecholamine secretion.  相似文献   

8.
Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage‐gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol‐rich lipid rafts to cholesterol‐poor non‐raft regions of the membrane. Low‐cholesterol environment enhances voltage‐dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.  相似文献   

9.
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/−) results in mild behavior abnormalities. The Nav1.2 expression level in Scn2a+/− mice is reported to be around 50–60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO) that can survive to adulthood, with about a quarter of Nav1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.  相似文献   

10.
Protoxin II is biologically active peptide containing the inhibitory cystine knot motif. A synthetic version of the toxin was generated with standard Fmoc solid phase peptide synthesis. If N‐methylmorpholine was used as a base during synthesis of the linear protoxin II, it was found that a significant amount of racemization (approximately 50%) was observed during the process of cysteine residue coupling. This racemization could be suppressed by substituting N‐methylmorpholine with 2,4,6‐collidine. The crude linear toxin was then air oxidized and purified. Electrophysiological assessment of the synthesized protoxin II confirmed its previously described interactions with voltage‐gated sodium channels. Eight other naturally occurring inhibitory knot peptides were also synthesized using this same methodology. The inhibitory potencies of these synthesized toxins on Nav1.7 and Nav1.2 channels are summarized. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
ClC chloride channels play essential roles in membrane excitability and maintenance of osmotic balance. Despite the recent crystallization of two bacterial ClC-like proteins, the gating mechanism for these channels remains unclear. In this study we tested scorpion venom for the presence of novel peptide inhibitors of ClC channels, which might be useful tools for dissecting the mechanisms underlying ClC channel gating. Recently, it has been shown that a peptide component of venom from the scorpion L. quinquestriatus hebraeus inhibits the CFTR chloride channel from the intracellular side. Using two-electrode voltage clamp we studied the effect of scorpion venom on ClC-0, -1, and -2, and found both dose- and voltage-dependent inhibition only of ClC-2. Comparison of voltage-dependence of inhibition by venom to that of known pore blockers revealed opposite voltage dependencies, suggesting different mechanisms of inhibition. Kinetic data show that venom induced slower activation kinetics compared to pre-venom records, suggesting that the active component(s) of venom may function as a gating modifier at ClC-2. Trypsinization abolished the inhibitory activity of venom, suggesting that the component(s) of scorpion venom that inhibits ClC-2 is a peptide.  相似文献   

12.
The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom.  相似文献   

13.
Congenital insensitivity to pain (CIP) or congenital analgesia is a rare monogenic hereditary condition. This disorder is characterized by the inability to perceive any form of pain. Nonsense mutations in Nav.1.7, the main pain signaling voltage-gated sodium channel, lead to its truncations and, consequently, to the inactivation of the channel functionality. However, a non-truncating homozygously inherited missense mutation in a Bedouin family with CIP (Nav1.7-R907Q) has also been reported. Based on our currently acquired in-depth knowledge of matrix metalloproteinase (MMP) cleavage preferences, we developed the specialized software that predicts the presence of the MMP cleavage sites in the peptide sequences. According to our in silico predictions, the peptide sequence of the exposed extracellular unstructured region linking the S5–S6 transmembrane segments in the DII domain of the human Nav1.7 sodium channel is highly sensitive to MMP-9 proteolysis. Intriguingly, the CIP R907Q mutation overlaps with the predicted MMP-9 cleavage site sequence. Using MMP-9 proteolysis of the wild-type, CIP, and control peptides followed by mass spectrometry of the digests, we demonstrated that the mutant sequence is severalfold more sensitive to MMP-9 proteolysis relative to the wild type. Because of the substantial level of sequence homology among sodium channels, our data also implicate MMP proteolysis in regulating the cell surface levels of the Nav1.7, Nav1.6, and Nav1.8 channels, but not Nav1.9. It is likely that the aberrantly accelerated MMP-9 proteolysis during neurogenesis is a biochemical rational for the functional inactivation in Nav1.7 and that the enhanced cleavage of the Nav1.7-R907Q mutant is a cause of CIP in the Bedouin family.  相似文献   

14.
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.  相似文献   

15.
16.
The three-dimensional structure of native SHL-I, a lectin from the venom of the Chinese bird spider Selenocosmia huwena, has been determined from two-dimensional 1H NMR spectroscopy recorded at 500 and 600 MHz. The best 10 structures have NOE violation <0.3 Å, dihedral violation <2 deg, and average root-mean-square differences of 0.85 + 0.06 Å over backbone atoms. The structure consists of a three-stranded antiparallel -sheet and three turns. The three disulfide bridges and three-stranded antiparallel -sheet form a inhibitor cystine knot motif which is adopted by several other small proteins, such as huwentoxin-I, -conotoxin, and gurmarin. The C-terminal fragment from Leu28 to Trp32 adopts two sets of conformations corresponding to the cis and trans conformations of Pro31. The structure of SHL-I also has high similarity with that of the N-terminus of hevein, a lectin from rubber-tree latex.  相似文献   

17.
Loss-of-function mutations in the pore-forming α subunit of the voltage-gated sodium channel 1.7 (Nav1.7) cause congenital indifference to pain and anosmia. We used immunohistochemical techniques to study Nav1.7 localization in the rat olfactory system in order to better understand its role in olfaction. We confirm that Nav1.7 is expressed on olfactory sensory axons and report its presence on vomeronasal axons, indicating an important role for Nav1.7 in transmission of pheromonal cues. Following neuroepithelial injury, Nav1.7 was transiently expressed by cells of monocytic lineage. These findings support an emerging role for Nav1.7 in immune function. This sodium channel may provide an important pharmacological target for treatment of inflammatory injury and inflammatory pain syndromes.  相似文献   

18.
The voltage-gated sodium channel NaV1.7 has received much attention from the scientific community due to compelling human genetic data linking gain- and loss-of-function mutations to pain phenotypes. Despite this genetic validation of NaV1.7 as a target for pain, high quality pharmacological tools facilitate further understanding of target biology, establishment of target coverage requirements and subsequent progression into the clinic. Within the sulfonamide class of inhibitors, reduced potency on rat NaV1.7 versus human NaV1.7 was observed, rendering in vivo rat pharmacology studies challenging. Herein, we report the discovery and optimization of novel benzoxazine sulfonamide inhibitors of human, rat and mouse NaV1.7 which enabled pharmacological assessment in traditional behavioral rodent models of pain and in turn, established a connection between formalin-induced pain and histamine-induced pruritus in mice. The latter represents a simple and efficient means of measuring target engagement.  相似文献   

19.
μ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a ‘native’ CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, μ-conotoxin KIIIA, the smallest and most studied μ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native μ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native μ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three μ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of μ-conotoxins targeting therapeutically relevant NaV subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号