首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

In this context, carboxymethyl cellulase (CMCase) production from Glutamicibacter arilaitensis strain ALA4 was initially optimized by one factor at a time (OFAT) method using goat dung as proficient feedstock. Two-level full factorial design (25 factorial matrix) using first-order polynomial model revealed the significant (p?<?0.05) influence of pH, moisture, and peptone on CMCase activity. Central composite design at N?=?20 was further taken into account using a second-order polynomial equation, and thereby liberated maximum CMCase activity of 4925.56?±?31.61?U/g in the goat dung medium of pH 8.0 and 100% moisture containing 1% (w/w) peptone, which was approximately two fold increment with respect to OFAT method. Furthermore, the partially purified CMCase exhibited stability not only at high pH and temperature but also in the presence of varied metal ions, organic solvents, surfactants, and inhibitors with pronounced residual activities. The enzymatic hydrolysis using partially purified CMCase depicted the maximum liberation of fermentable sugars from alkali pretreated lignocellulosic wastes biomass in the order of paddy straw (13.8?±?0.15?mg/g)?>?pomegranate peel (9.1?±?0.18?mg/g)?>?sweet lime peel (8.37?±?0.16?mg/g), with saccharification efficiency of 62.1?±?0.8, 40.95?±?0.4, and 37.66?±?0.4%, respectively after 72?hr of treatment.  相似文献   

2.
A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.  相似文献   

3.
The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69–10.08% lignin in P. juliflora and 6.89–7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90–3.97 and 4.25–4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0–33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1–25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.  相似文献   

4.
纤维素酶与木质纤维素生物降解转化的研究进展   总被引:7,自引:0,他引:7  
利用纤维素酶将预处理后的秸秆降解成可发酵性单糖,然后发酵生产所需的液体燃料及化工产品的技术,对于我国解决能源、环境、人口就业等难题有着巨大的积极影响。在木质纤维素生物降解转化工艺中,减少纤维素酶用量及提高酶解效率是降低木质纤维素降解成本的关键。纤维素酶系和木质纤维素酶水解技术的改进需要深入了解纤维素酶系统的组成及其协同作用、纤维素酶的结构与功能以及纤维素酶的生产技术。将就以上几个方面的研究进展进行讨论,并深入探讨了纤维素酶糖化能力的评价方法。  相似文献   

5.
Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion.  相似文献   

6.

Background  

Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing.  相似文献   

7.
The objective of this research was to measure the effects of different cellulase and hemicellulase mixtures on fermentable sugar production from two different perennial biomasses--switchgrass and a low-impact, high-diversity prairie biomass mixture (LIHD). Each was subjected to NaOH pretreatment, followed by hydrolysis with a commercial cellulase and β-glucosidase mixture [CB] supplemented with either of two hemicellulases. For both biomasses, there was little gain in sugar yield when using CB alone beyond 20-25 mg/g TS; further gain in yield was possible only through hemicellulase supplementation. An equation that modeled CB and hemicellulase effects as occurring independently fit the data reasonably well, except at the lowest of cellulase loadings with hemicellulase, where synergistic interactions were evident. Examination of the marginal effectiveness of enzyme loadings (incremental grams sugar per incremental mg enzyme) over a broad range of loadings suggests that there is no need to customize enzymatic hydrolysis for NaOH-pretreated switchgrass and LIHD.  相似文献   

8.
The potential of 1-buthyl-3-methylpyridinium chloride, [Bmpy][Cl], as a pretreatment solvent for lignocellulosic biomasses, Bagasse and Eucalyptus, was investigated. The yields of regenerated biomasses ranged between 35% and 96%, and varied according to the pretreatment time, type of ionic liquid (IL) and biomass. The pretreatment of the biomass with [Bmpy][Cl] resulted in up to 8-fold increase in the cellulose conversion when compared with the untreated biomass. For a short pretreatment period (i.e., 10 min), [Bmpy][Cl] showed better performance than 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) with respect to the initial enzymatic saccharification rates. The increase in the reaction rates with [Emim][OAc] treatment was because of a reduction in the cellulose crystallinity. In contrast, a decrease in the crystallinity index was not clearly observed for the biomass pretreated with [Bmpy][Cl], and the enhancement of the enzymatic saccharification rates using this IL is presumably due to a reduction in the degree of polymerization of cellulose in the biomass.  相似文献   

9.
Summary The use of low-pressure steam autohydrolysis in the pretreatment of corn stover and hybrid poplar has been assessed. In terms of yield of prehydrolyzed solids, minimal by-product formation and extent of subsequent enzymatic saccharification, the results of low-pressure steam pretreatment were found to be as good as or better than those reported for more severe pretreatment processes. Almost complete saccharification of the cellulose in the prehydrolyzed biomass solids was obtained within 24h with a commercial cellulase preparation — Celluclast. The presence of grinding elements (glass beads) during the enzymatic hydrolysis was found to increase the extent of saccharification by 40% to 50% over controls without any grinding elements.  相似文献   

10.
Summary The successful implementation of simultaneous saccharification and fermentation (SSF) technology for biomass conversion to ethanol requires competent analysis of complex biomass process streams, often obtained at extremes of pH. In this study, optimal conditions for handling biomass samples recovered from acid and alkaline pretreatments prior to traditional compositional analysis were developed. Methods for processing slurries from SSF were also determined. In both cases, a mixed wastepaper feedstock was used to test improved handling procedures and to document recommended performance.  相似文献   

11.
To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates. Although PaMan5A and PaMan26A displayed similar specificities toward a range of mannan substrates, they differed in their end products, suggesting differences in substrate binding. The N-terminal CBM35 module of PaMan26A displayed dual binding specificity toward xylan and mannan. PaXyn11A harboring a C-terminal CBM1 module efficiently degraded wheat arabinoxylan, releasing mainly xylobiose as end product. PaAbf51A and PaAbf62A arabinose-debranching enzymes exhibited differences in activity toward arabinose-containing substrates. Further investigation of the contribution made by each P. anserina auxiliary enzyme to the saccharification of wheat straw and spruce demonstrated that the endo-acting hemicellulases (PaXyn11A, PaMan5A, and PaMan26A) individually supplemented the secretome of the industrial T. reesei CL847 strain. The most striking effect was obtained with PaMan5A that improved the release of total sugars by 28% and of glucose by 18%, using spruce as lignocellulosic substrate.  相似文献   

12.
A multireaction kinetic model was developed for closed-system enzymatic hydrolysis of lignocellulosic biomass such as corn stover. Three hydrolysis reactions were modeled, two heterogeneous reactions for cellulose breakdown to cellobiose and glucose and one homogeneous reaction for hydrolyzing cellobiose to glucose. Cellulase adsorption onto pretreated lignocellulose was modeled via a Langmuir-type isotherm. The sugar products of cellulose hydrolysis, cellobiose and glucose, as well as xylose, the dominant sugar prevalent in most hemicellulose hydrolyzates, were assumed to competitively inhibit the enzymatic hydrolysis reactions. Model parameters were estimated from experimental data generated using dilute acid pretreated corn stover as the substrate. The model performed well in predicting cellulose hydrolysis trends at experimental conditions both inside and outside the design space used for parameter estimation and can be used for in silico process optimization.  相似文献   

13.
Bermudagrass, reed and rapeseed were pretreated with phosphoric acid–acetone and used for ethanol production by means of simultaneous saccharification and fermentation (SSF) with a batch and fed-batch mode. When the batch SSF experiments were conducted in a 3% low effective cellulose, about 16 g/L of ethanol were obtained after 96 h of fermentation. When batch SSF experiments were conducted with a higher cellulose content (10% effective cellulose for reed and bermudagrass and 5% for rapeseed), higher ethanol concentrations and yields (of more than 93%) were obtained. The fed-batch SSF strategy was adopted to increase the ethanol concentration further. When a higher water-insoluble solid (up to 36%) was applied, the ethanol concentration reached 56 g/L of an inhibitory concentration of the yeast strain used in this study at 38 °C. The results show that the pretreated materials can be used as good feedstocks for bioethanol production, and that the phosphoric acid–acetone pretreatment can effectively yield a higher ethanol concentration.  相似文献   

14.

Background

Large-scale processing of lignocellulosics for glucose production generally relies on high temperature and acidic or alkaline conditions. However, extreme conditions produce chemical contaminants that complicate downstream processing. A method that mainly rely on mechanical and enzymatic reaction completely averts such problem and generates unmodified lignin. Products from this process could find novel applications in the chemicals, feed and food industry. But a large-scale system suitable for this purpose is yet to be developed. In this study we applied simultaneous enzymatic saccharification and communition (SESC) for the pre-treatment of a representative lignocellulosic biomass, cedar softwood, under both laboratory and large-scale conditions.

Results

Laboratory-scale comminution achieved a maximum saccharification efficiency of 80% at the optimum pH of 6. It was possible to recycle the supernatant to concentrate the glucose without affecting the efficiency. During the direct alcohol fermentation of SESC slurry, a high yield of ethanol was attained. The mild reaction conditions prevented the generation of undesired chemical inhibitors. Large-scale SESC treatment using a commercial beads mill system achieved a saccharification efficiency of 60% at an energy consumption of 50?MJ/kg biomass.

Conclusion

SESC is very promising for the mild and clean processing of lignocellulose to generate glucose and unmodified lignin in a large scale. Economic feasibility is highly dependent on its potential to generate high value natural products for energy, specialty chemicals, feed and food application.
  相似文献   

15.
The potential of cellulase enzymes in the developing and ongoing “biorefinery” industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates.  相似文献   

16.
17.
Physicochemical properties of native and dilute acid pretreated (0.6% H2SO4, 10 min, and either 170°C or 180°C) poplar were investigated before and during simultaneous saccharification and fermentation (SSF). SSF duration was 5 days and employed Trichoderma reesei cellulases and Saccharomyces cerevisiae fermentation. Chemical composition (glucan, xylan, lignin), enzyme-accessible surface area (based on solute exclusion), crystallinity index, particle size distribution, particle shape, and enzyme adsorption (cellulase, β-glucosidase) were compared to cellulose conversion. Cellulose conversion varied from 8% for native poplar to 78% for the 180°C-pretreated poplar. The physicochemical properties of native poplar changed little during SSF. In contrast, the physicochemical properties of the 180°C-pretreated feedstock changed markedly. Enzyme-accessible surface area and β-glucosidase adsorption increased by 83% and 65%, respectively, as cellulose was removed from the feedstock. Crystallinity index and particle size (large fraction) decreased by 65% and 93%, respectively. Cellulase adsorption per unit weight increased initially (+45%) followed by a slight decrease (−13%). The same trends were observed, although to a lesser extent, for 170°C-pretreated feedstock.  相似文献   

18.
A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.  相似文献   

19.
Commercial cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma viride and pectinase [poly(1,4-α-d-galacturonide) glycanohydrolase, EC 3.2.1.15] from Aspergillus niger have been applied to produce fermentation syrups from sugar-beet pulp and potato fibre. Cellulosic, hemicellulosic and pectic polysaccharides of these substrates were hydrolysed extensively. Recovery of enzymes has been investigated in a packed-column reactor, connected with a hollow-fibre ultrafiltration unit. Enzymes appeared to be stable in this type of reactor, although part of the enzyme activity was lost, especially by adsorption onto the substrate residue.  相似文献   

20.
Front-end protein recovery from biomass at different maturities, and its effects on chemical pretreatment and enzyme hydrolysis of partially deproteinized fiber were investigated. The protein recovery from alfalfa and switchgrass biomass using sodium dodecyl sulfate and potassium hydroxide treatments was ~50–65 % of initial biomass protein. When hot water was used as extraction media, the protein recovery was 52.9 and 43.7 % of total protein in switchgrass and alfalfa, respectively. For any treatment, relative protein recovery was higher from switchgrass than from alfalfa. Only approximately half the total protein was recovered from relatively mature (early fall) biomass compared with midsummer harvested biomass. When protein was recovered partially using sodium dodecyl sulfate or potassium hydroxide, and leftover fiber pretreated, aqueous ammonia pretreatment removed 58.5–60.1 % of lignin and retained more cellulose in the fiber compared with acid pretreatment (nearly no lignin removal). Protein removal was helpful in the enzyme digestibility of fibers. Delignification of ammonia pretreated partially deproteinized alfalfa fiber was in the range of 34.4–45 %, while dilute sulfuric acid did not remove lignin effectively. Overall, the higher delignification and enzyme digestibilities were observed in aqueous ammonia pretreated partially deproteinized alfalfa fibers regardless of biomass type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号