首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Drought events, agricultural practices and plant communities influence microbial and soil abiotic parameters which can feedback to fodder production. This study aimed to determine which soil legacies influence plant biomass production and nutritional quality, and its resistance and recovery to extreme weather events.

Methods

In a greenhouse experiment, soil legacy effects on Lolium perenne were examined, first under optimal conditions, and subsequently during and after drought. We used subalpine grassland soils previously cultivated for two years with grass communities of distinct functional composition, and subjected to combinations of climatic stress and simulated management.

Results

The soil legacy of climatic stress increased biomass production of Lolium perenne and its resistance and recovery to a new drought. This beneficial effect resulted from higher nutrient availability in soils previously exposed to climatic stresses due to lower competitive abilities and resistance of microbial communities to a new drought. This negative effect on microbial communities was strongest in soils from previously cut and fertilized grasslands or dominated by conservative grasses.

Conclusion

In subalpine grasslands more frequent climatic stresses could benefit fodder production in the short term, but threaten ecosystem functioning and the maintenance of traditional agricultural practices in the long term.
  相似文献   

2.

Background

Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification.

Results

In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX?-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin.

Conclusions

Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
  相似文献   

3.

Background

The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF).

Results

Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had significantly higher hemicellulase and β-glucosidase enzyme activities. Liquid chromatography tandem mass spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and 397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains. In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and β-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome.

Conclusions

In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for lignocellulosic feedstock hydrolysis.
  相似文献   

4.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   

5.

Objectives

To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.

Results

One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8–2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2–2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions.

Conclusions

More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.
  相似文献   

6.

Objective

To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing.

Results

Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C.

Conclusion

Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
  相似文献   

7.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

8.

Background and aims

The changes in the characteristics of Panicum virgatum, an exotic invasive species, after invading various plant communities on the Loess Plateau in China and the main soil nutrient factors in these communities closely associated with invasion remain unclear.

Methods

A pot culture experiment was carried out to simulate the changes in photosynthesis, biomass, and biomass allocation in P. virgatum and to identify the main soil nutrient factors in various soils collected from local plant communities. P. virgatum was grown in soils collected from communities of P. virgatum (PS treatment), Setaria viridis (SS treatment), Bothriochloa ischaemum (BS treatment), and Artemisia sacrorum (AS treatment) and in a mixed soil from the communities of S. viridis, B. ischaemum, and A. sacrorum (MS treatment).

Results

Photosynthesis in P. virgatum differed significantly among the soil treatments. Net photosynthetic rate, stomatal conductance, and photochemical efficiency (Fv/Fm) were highest in PS, whereas single-photon avalanche diode values were highest in PS and SS. The variation of biomass differed significantly in different tissues of P. virgatum in the treatments. Leaf and stem biomasses were highest in PS and SS, and root biomass was highest in PS and MS. Total biomass differed significantly among the treatments, except between BS and MS. Both the leaf to total and stem to total biomass ratios were highest in AS and SS, but the root to total biomass ratio was lowest in these two treatments. A constrained redundancy analysis and a path analysis suggested that the water-soluble nitrate-nitrogen (W-NN) concentration of the soil could significantly affect photosynthesis, biomass, and biomass allocation in P. virgatum.

Conclusions

Photosynthesis, biomass, and biomass allocation in P. virgatum differed significantly when grown in soils from different local plant communities on the Loess Plateau. The soil W-NN concentration in these local plant communities likely has a large impact on the invasive success of P. virgatum.
  相似文献   

9.
10.

Aims

Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.

Methods

Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.

Results

Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.

Conclusions

Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
  相似文献   

11.

Introduction

The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.

Results

We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions.

Conclusion

Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.
  相似文献   

12.

Background and aims

Plant-soil feedback may vary across host species and environmental gradients. The relative importance of these biotic versus abiotic drivers of feedback will determine the stability of plant and microbial communities across environments. If plant hosts are the main driver of soil microbial communities, plant-soil feedback may be stable across changing environments. However, if microbial communities vary with environmental gradients, feedback may also vary, limiting its capacity to predict plant distributions.

Methods

We characterized arbuscular mycorrhizal (AM) fungi across tree plantations and a primary Neotropical rainforest. We then performed a plant-soil feedback pot experiment of AM fungi from these plantations on three plant species and related feedback and AM fungal communities in the field.

Results

In the field, temporal and spatial variation in AM fungal composition was similar in magnitude to variation across plant host species. Composition of AM fungi in the pot experiment significantly differed from the field plots. Furthermore, differential feedback was explained by shifts in AM fungal composition only for one plant host species (Hyeronima alchorneoides) in the pot experiment.

Conclusions

Natural AM fungal communities were temporally and spatially heterogeneous and AM fungal communities in the greenhouse did not reflect natural soils. These factors led to heterogeneous and unpredictable feedback responses, which suggests that applying greenhouse derived plant-soil feedback trends to predict plant coexistence in natural systems may be misleading.
  相似文献   

13.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

14.

Background

The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

Results

We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

Conclusion

Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
  相似文献   

15.

Background and aims

Plant breeding activities shape the rhizosphere microbiome but less is known about the relationship of both with the seed microbiome. We analyzed the composition of bacterial communities of seeds and rhizospheres of Styrian oil pumpkin genotypes in comparison to bulk soil to elucidate specific microbial signatures to support a concept involving plant-microbe interactions in breeding strategies.

Methods

The seed and rhizosphere microbiomes of 14 genotypes of oilseed pumpkin and relatives were analyzed using a 16S rRNA gene amplicon sequencing approach, which was assessed by bioinformatics and statistical methods.

Results

All analyzed microhabitats were characterized by diverse bacterial communities, but the relative proportions of phyla and the overall diversity was different. Seed microbiomes were characterized by the lowest diversity and dominant members of Enterobacteriaceae including potential pathogens (Erwinia, Pectobacterium). Potential plant-beneficial bacteria like Lysobacter, Paenibacillus and Lactococcus contributed to the microbial communities in significant abundances. Interestingly, strong genotype-specific microbiomes were detected for seeds but not for the rhizospheres.

Conclusions

Our study indicates a strong impact of the Cucurbita pepo genotype on the composition of the seed microbiome. This should be considered in breeding of new cultivars that are more capable of exploiting beneficial indigenous microbial communities.
  相似文献   

16.

Background

The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process.

Results

By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493).

Conclusions

Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
  相似文献   

17.

Objective

To protect the enzymes during fed-batch cellulase production by means of partial enzyme recovery at regular intervals.

Results

Extracellular enzymes were partially recovered at the intervals of 1, 2, or 3 days. Mycelia were also removed to avoid contamination. Increases in the total harvested cellulase (24–62%) and β-glucosidase (22–76%) were achieved. In fermentor cultivation when the enzymes were recovered every day with 15% culture broth. The total harvested cellulase and β-glucosidase activity increased by 43 and 58%, respectively, with fungal cell concentration maintained at 3.5–4.5 g l?1.

Conclusion

Enzyme recovery at regular intervals during fed-batch cellulase cultivation could protect the enzyme in the culture broth and enhance the enzyme production when the fungal cell concentration is maintained in a reasonable range.
  相似文献   

18.

Background

Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed.

Results

CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass.

Conclusion

We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.
  相似文献   

19.
Gao S  Xu S  Fang Y  Fang J 《Proteome science》2012,10(Z1):S7

Background

Identification of phosphorylation sites by computational methods is becoming increasingly important because it reduces labor-intensive and costly experiments and can improve our understanding of the common properties and underlying mechanisms of protein phosphorylation.

Methods

A multitask learning framework for learning four kinase families simultaneously, instead of studying each kinase family of phosphorylation sites separately, is presented in the study. The framework includes two multitask classification methods: the Multi-Task Least Squares Support Vector Machines (MTLS-SVMs) and the Multi-Task Feature Selection (MT-Feat3).

Results

Using the multitask learning framework, we successfully identify 18 common features shared by four kinase families of phosphorylation sites. The reliability of selected features is demonstrated by the consistent performance in two multi-task learning methods.

Conclusions

The selected features can be used to build efficient multitask classifiers with good performance, suggesting they are important to protein phosphorylation across 4 kinase families.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号