首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome fusion and fission are primary mechanisms of karyotype evolution. In particular, the fusion of a sex chromosome and an autosome has been proposed as a mechanism to resolve intralocus sexual antagonism. If sexual antagonism is common throughout the genome, we should expect to see an excess of fusions that join sex chromosomes and autosomes. Here, we present a null model that provides the probability of a sex chromosome autosome fusion, assuming all chromosomes have an equal probability of being involved in a fusion. This closed-form expression is applicable to both male and female heterogametic sex chromosome systems and can accommodate unequal proportions of fusions originating in males and females. We find that over 25% of all chromosomal fusions are expected to join a sex chromosome and an autosome whenever the diploid autosome count is fewer than 16, regardless of the sex chromosome system. We also demonstrate the utility of our model by analysing two contrasting empirical datasets: one from Drosophila and one from the jumping spider genus Habronattus. We find that in the case of Habronattus, there is a significant excess of sex chromosome autosome fusions but that in Drosophila there are far fewer sex chromosome autosome fusions than would be expected under our null model.  相似文献   

2.
Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.  相似文献   

3.
4.
H Kupfer  D Wise 《Génome》2000,43(3):521-527
We have analyzed autosome, sex chromosome, and spindle behavior in spermatocytes of the flea beetle, Alagoasa bicolor. In this species, males have very large X and Y chromosomes, which, although they are never physically connected, always segregate to opposite spindle poles at anaphase I, thus preserving the sex ratio in the next generation. We find that the sex chromosomes are partitioned to a peripheral spindle domain early in prometaphase I and that their segregation can be accounted for mainly by their reorientation from the parallel to the linear configuration, and little by chromosome-to-pole movement. Further, the behavior of the autosomes and that of the sex chromosomes seem to have little to do with each other. Spindle elongation is minimal; barely segregating the large sex chromosomes into the daughter cells at telophase I.  相似文献   

5.
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure predominantly localized in the mitochondrial inner membrane, where it is closely associated with mitochondrial function, biogenesis, and genome stability (Daum, 1985; Janitor and Subik, 1993; Jiang et al., 2000; Schlame et al., 2000; Zhong et al., 2004). Previous studies have shown that yeast mutant cells lacking CL due to a disruption in CRD1, the structural gene encoding CL synthase, exhibit defective colony formation at elevated temperature even on glucose medium (Jiang et al., 1999; Zhong et al., 2004), suggesting a role for CL in cellular processes apart from mitochondrial bioenergetics. In the current study, we present evidence that the crd1Delta mutant exhibits severe vacuolar defects, including swollen vacuole morphology and loss of vacuolar acidification, at 37 degrees C. Moreover, vacuoles from crd1Delta show decreased vacuolar H(+)-ATPase activity and proton pumping, which may contribute to loss of vacuolar acidification. Deletion mutants in RTG2 and NHX1, which mediate vacuolar pH and ion homeostasis, rescue the defective colony formation phenotype of crd1Delta, strongly suggesting that the temperature sensitivity of crd1Delta is a consequence of the vacuolar defects. Our results demonstrate the existence of a novel mitochondria-vacuole signaling pathway mediated by CL synthesis.  相似文献   

6.
Histone and chromatin cross-talk   总被引:33,自引:0,他引:33  
Chromatin is the physiologically relevant substrate for all genetic processes inside the nuclei of eukaryotic cells. Dynamic changes in the local and global organization of chromatin are emerging as key regulators of genomic function. Indeed, a multitude of signals from outside and inside the cell converges on this gigantic signaling platform. Numerous post-translational modifications of histones, the main protein components of chromatin, have been documented and analyzed in detail. These 'marks' appear to crucially mediate the functional activity of the genome in response to upstream signaling pathways. Different layers of cross-talk between several components of this complex regulatory system are emerging, and these epigenetic circuits are the focus of this review.  相似文献   

7.
We investigate the conditions for the origin and maintenance of postzygotic isolation barriers, so called (Bateson‐)Dobzhansky–Muller incompatibilities or DMIs, among populations that are connected by gene flow. Specifically, we compare the relative stability of pairwise DMIs among autosomes, X chromosomes, and mitochondrial genes. In an analytical approach based on a continent‐island framework, we determine how the maximum permissible migration rates depend on the genomic architecture of the DMI, on sex bias in migration rates, and on sex‐dependence of allelic and epistatic effects, such as dosage compensation. Our results show that X‐linkage of DMIs can enlarge the migration bounds relative to autosomal DMIs or autosome‐mitochondrial DMIs, in particular in the presence of dosage compensation. The effect is further strengthened with male‐biased migration. This mechanism might contribute to a higher density of DMIs on the X chromosome (large X‐effect) that has been observed in several species clades. Furthermore, our results agree with empirical findings of higher introgression rates of autosomal compared to X‐linked loci.  相似文献   

8.
Blue MG 《Theriogenology》1981,15(3):277-293
This study provides accumulated data to assist the definition of karyotypes from normal and infertile horses. The normal karyotype of the horse (2n = 64) was characterized following Giemsa staining and C- banding, and 23% aneuploidy was found among chromosome counts of cells prepared from 44 clinically normal horses and 24 equine embryos. These expected variations in chromosome counts are especially important in the evaluation of potential mosaicism. Centromere staining was shown to be a valuable aid for the identification of specific chromosomes, in particular the sex chromosomes. Sex chromatin studies were applied to nerve tissue and polymorphonuclear neutrophils obtained from three horses. Distinctive sex chromatin bodies were detected in 70% of neurones from a normal mare. The sex chromatin was most frequently located adjacent to the nucleolus. Nuclear appendages ("drumsticks") were present in 4% of polymorphonuclear neutrophils from a normal mare. Small numbers of similar structures were noted in the neutrophils from each animal examined.  相似文献   

9.
10.
The properties of sex chromosomes, including patterns of inheritance, reduced levels of recombination, and hemizygosity in one of the sexes may result in the faster fixation of new mutations via drift and natural selection. Due to these patterns and processes, the two rules of speciation to describe the genetics of postzygotic isolation, Haldane's rule and the large‐X effect, both explicitly include quicker evolution on sex chromosomes relative to autosomes. Because sex‐linked mutations may be the first to become fixed in the speciation process, and appear to be due to stronger genetic drift (in birds), we may identify pronounced genetic differentiation in sex chromosomes in taxa experiencing recent speciation and diverging mainly via genetic drift. Here, we use nine sex‐linked and 21 autosomal genetic markers to investigate differential divergence and introgression between marker types in Certhia americana. We identified increased levels of genetic differentiation and reduced levels of gene flow on sex chromosomes relative to autosomes. This pattern is similar to those observed in other recently‐divergent avian species, providing another case study of the earlier role of sex chromosomes in divergence, relative to autosomes. Additionally, we identify three markers that may be under selection between Certhia americana lineages.  相似文献   

11.
12.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species.  相似文献   

13.
Extensive interspecific genetic introgression is often reported, and appraising its genomic impact can serve to determine whether it results from selection on specific loci or from demographic processes affecting the whole genome. The three species of hares present in the Iberian Peninsula harbour high frequencies of mitochondrial DNA (mtDNA) from Lepus timidus, an arctic/boreal species now extinct in the region. This could result from the invasive replacement of L. timidus by the temperate species during deglaciation but should then have left traces in the nuclear genome. We typed single nucleotide polymorphisms (SNPs) discovered by sequencing 10 autosomal loci, two X-linked and one Y-linked in species-wide samples of the four taxa. Based on lineage-diagnostic SNPs, we detected no trace of L. timidus sex chromosomes in Iberia. From the frequencies of inferred haplotypes, autosomal introgression into L. granatensis appeared mostly sporadic but always widespread instead of restricted to the north as mtDNA. Autosomal introgression into Iberian L. europaeus , inhabiting the Pyrenean foothills, was hardly detectable, despite quasi-fixation of L. timidus mtDNA. L. castroviejoi , endemic to the Cantabrian Mountains and fixed for L. timidus mtDNA, showed little traces of autosomal introgression. The absence of sex-chromosome introgression presumably resulted from X-linked hybrid male unfitness. The contrasting patterns between the autosomes and mtDNA could reflect general gender asymmetric processes such as frequency-dependent female assortative mating, lower mtDNA migration and higher male dispersal, but adaptive mtDNA introgression cannot be dismissed. Additionally, we document reciprocal introgression between L. europaeus and both L. granatensis in Iberia and L. timidus outside Iberia.  相似文献   

14.
Hemipteran chromosomes are holocentric and show regular, special behavior at meiosis. While the autosomes pair at pachytene, have synaptonemal complexes (SCs) and recombination nodules (RNs) and segregate at anaphase I, the sex chromosomes do not form an SC or RNs, divide equationally at anaphase I, and their chromatids segregate at anaphase II. Here we show that this behavior is shared by the X and Y chromosomes of Triatoma infestans and the X(1)X(2)Y chromosomes of Triatoma pallidipennis. As Rec8p is a widely occurring component of meiotic cohesin, involved in meiotic homolog segregation, we used an antibody against Rec8p of Caenorhabditis elegans for immunolocalization in these triatomines. We show that while Rec8p is colocalized with SCs in the autosomes, no Rec8p can be found by immunolabeling in the sex chromosomes at any stage of meiosis. Furthermore, Rec8p labeling is lost from autosomal bivalents prior to metaphase I. In both triatomine species the sex chromosomes conjoin with each other during prophase I, and lack any SC, but they form "fuzzy cores", which are observed with silver staining and with light and electron microscopy during pachytene. Thin, serial sectioning and electron microscopy of spermatocytes at metaphases I and II reveals differential behavior of the sex chromosomes. At metaphase I the sex chromosomes form separate entities, each surrounded by a membranous sheath. On the other hand, at metaphase II the sex chromatids are closely tied and surrounded by a shared membranous sheath. The peculiar features of meiosis in these hemipterans suggest that they depart from the standard meiotic mechanisms proposed for other organisms.  相似文献   

15.
The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that the MROS3 gene is located in at least two copies tandemly arranged on the X chromosome with additional copy(ies) on the autosome(s), while MROS1, MROS2, and MROS4 are exclusively autosomal. The specificity of PCR products was checked by digestion with a restriction enzyme or reamplification using nested primers. Homology search of databases has shown the presence of five MROS3 homologues in A. thaliana, four of them arranged in two tandems, each consisting of two copies. We conclude that MROS3 is a low-copy gene family, connected with the proper pollen development, which is present not only in dioecious but also in other dicot plant species.  相似文献   

16.
Sex chromosomes,recombination, and chromatin conformation   总被引:17,自引:0,他引:17  
  相似文献   

17.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

18.
19.
Fanconi anemia (FA) and cells lacking functional BRCA1 and BRCA2 proteins are hypersensitive to interstrand crosslinking (ICL) agents and show increased numbers of chromosomal breaks and radials. Although radial formation has been used to diagnose FA for more than 30 years, there has been little analysis of these characteristic formations. In this study, radials were analyzed from FA-A and FA-G fibroblasts as well as normal and retrovirally-corrected FA-A fibroblasts treated with high doses of ICLs. Radials were found to only involve non-homologous chromosome interactions and to be distributed nearly randomly along the length of chromosomes. Sites on chromosomes that did show increased frequency of radial involvement did not correlate with known fragile sites or pericentric regions. Hybrid radials were observed between mouse and human chromosomes in human-mouse hybrid cells produced by microcell-mediated chromosome transfer of mouse chromosomes into human FA-A fibroblasts. Both X and Y chromosomes were notably not involved in radials. These observations suggest that ICL repair may involve short stretches of homology, resulting in aberrant radial formation in the absence of FA proteins.  相似文献   

20.
Mammalian genome replication and maintenance are intimately coupled with the mechanisms that ensure cohesion between the resultant sister chromatids and the repair of DNA breaks. Although a sister chromatid exchange (SCE) is an error-free swapping of precisely matched and identical DNA strands, repetitive elements adjacent to the break site can act as alternative template sites and an unequal sister chromatid exchange can result, leading to structural variations and copy number change. Here we test the vulnerability for SCEs of the repeat-rich bovine Y chromosome in comparison with X, 16 and 26 chromosomes, using chromosome orientation-fluorescence in situ hybridization. The mean SCE rate of the Y chromosome (0.065 ± 0.029) was similar to that of BTA16 and BTA26 (0.065, 0.055), but was only approximately half of that of the X chromosome (0.142). As the chromosomal length affects the number of SCE events, we adjusted the SCE rates of the Y, 16, and 26 chromosomes to the length of the largest chromosome X resulting in very similar adjusted SCE (SCE(adj)) rates in all categories. Our results - based on 3 independent bulls - show that, although the cattle Y chromosome is a chest full of repeated elements, their presence and the documented activity of repeats in SCE formation does not manifest in significantly higher SCE(adj) rates and suggest the importance of the structural organization of the Y chromosome and the role of alternative mitotic DNA repair mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号