首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (~2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.  相似文献   

2.
1. Aquatic resource fluxes from streams can provide significant subsidies for riparian consumers. Because aquatic resource fluxes can be highly variable in space and time, the subsidy efficiency (i.e. transfer to the recipient food web) is controlled by the short‐term aggregative response of riparian consumers. 2. Field manipulations of stream‐derived invertebrate prey subsidies were used to examine specific aggregative responses of ground‐dwelling arthropods to riverine subsidy pulses in a braided‐river (Tagliamento River, NE Italy). Subsidy manipulation comprised short‐term reductions of natural stream‐derived subsidies and increased subsidies of stream‐derived invertebrate prey during four seasons. 3. We hypothesised that specific aggregative responses of riparian arthropods depend on their specialisation on aquatic insects which was inferred from stable isotope analysis. Natural riverine subsidy sources including aquatic insect emergence and surface‐drifting organisms were quantified. 4. Arthropods responded significantly with a reduction in abundance by 51%, at reduced subsidies and an increase by 110% at increased subsidies, when averaged over all seasons. Different arthropod taxa responded differently to subsidy manipulations in relation to their specialisation on aquatic subsidies: ground beetles with a diet consisting predominantly of aquatic insects responded only to subsidy reductions, indicating that their local abundance was not limited by natural stream‐derived subsidies; lycosid spiders with a partly aquatic diet showed no significant response; and ants, although relying on a terrestrial diet, responded positively to added stream‐derived invertebrate prey, indicating that stranding of surface‐drifting terrestrial invertebrates represented an important subsidy pathway. 5. Ground beetles and lycosid spiders were seasonally separated in their use of aquatic subsidies. Results indicate that the life‐history characteristics of riparian consumers can control the subsidy efficiency for the recipient community. By the effective uptake of pulsed riverine‐derived subsidies, riparian arthropods can enhance the transfer of riverine food sources to the riparian food web.  相似文献   

3.
4.
The diets of terapontid assemblages in 22 catchments across Australia's wet–dry tropics were investigated in relation to the direct use of terrestrial‐riparian inputs, as well as the role of ontogeny and morphology in mediating consumption of allocthonous material. The diet of several species was restricted almost entirely to instream trophic resources throughout their life history. In contrast, ontogenetic diet shifts towards increasing consumption of terrestrial prey types were a prominent feature of the dietary ecology of some terapontids, with collective allocthonous dietary items making a significant contribution (up to 42%) to diet in larger size classes of several species. For those species consuming terrestrial‐riparian material in their diet, terrestrial invertebrates were the most common prey item; however, terrestrial vegetation, principally riparian fruits, and terrestrial vertebrates were also important dietary inclusions in the larger size classes of particular species. A large mouth gape was the morphological feature most strongly associated with consumption of terrestrial food resources within the Terapontidae. Results indicate that the direct consumption of terrestrially derived food sources in northern Australian aquatic systems may be more important than previously asserted, and that additional research is required to better clarify the role of terrestrial subsidies to these ecosystems.  相似文献   

5.
1. Insects that emerge from rivers provide nutritional subsidies to local riparian predators. Adult damselflies and dragonflies often benefit from aquatic resources, but their high mobility and evasiveness have made it difficult to monitor their diets. 2. A dual fatty acid and stable isotope analysis approach was used to investigate the links between Odonata size and behaviour with proportions of their aquatically derived nutritional sources. Additionally, the study investigated the variation in dietary contributions of aquatic food sources to Odonata between two sections of a river, each with different aquatic productivity rates. 3. Variations in body size and foraging method of Odonata in the Kowie River (South Africa) contributed to differences in the contributions of aquatic food sources to their diets. Large Odonata that consumed prey in flight had smaller proportions of aquatic indicator fatty acids and stable isotope‐generated proportions of aquatic food sources than did the smaller Odonata that consumed prey from perches. 4. There was a considerable amount of interspecific variation in indicators of aquatic feeding, but Odonata at an upstream site had smaller proportions of aquatic indicators than those at a downstream site which had higher insect emergence rates. 5. The findings of this study contribute information on the dynamics of feeding ecology among adult Odonata, and the substantial contributions of aquatic prey (>80% of total diet in some cases) indicated that cross‐boundary trophic linkages via odonates are strong in the Kowie River.  相似文献   

6.
Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis) over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging.  相似文献   

7.
The integration of lakes into watershed-scale energy budgets remains a major goal of aquatic ecosystem ecology. However, this enterprise has focused almost exclusively on temperate and boreal systems and on zooplankton as representatives of system-wide energy flow. We investigated the proportion of consumer biomass derived from terrestrial sources, allochthony, in three classes of high-elevation lakes—alpine, large and small montane—of varying geometry and watershed ecosystem development, and across five taxa, including macrobenthic invertebrates and fish. We used stable isotopes of carbon (13C:12C), nitrogen (15N:14N), and hydrogen (2H:1H) to fit a modular Bayesian mixing model, which estimated proportional assimilation of phytoplankton, algal periphyton, and terrestrial organic matter by each consumer. The stable isotope analysis was supplemented with a comparison of fatty acid profiles between consumers and producers, and with a Daphnia magna rearing study involving aquatic and terrestrial nutrient sources. The most probable estimate of allochthony across consumer taxa was 41% in small montane lakes (< 0.1 ha) with high terrestrial C loading. For large montane (3–11 ha) and alpine lakes (0.8–3 ha), with substantially less terrestrial influence, allochthony was just 4 and 3%, respectively. Allochthony was also lower on average for benthic grazers than for pelagic consumers. Our results corroborate previous findings that lake size, depth, and light penetration are dominant physical controls on allochthony, but add that it sharply declines at high elevation due to changes in terrestrial primary production near or above tree line.  相似文献   

8.
Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark (Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.  相似文献   

9.
Klecka J  Boukal DS 《PloS one》2012,7(6):e37741
Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka's diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny.  相似文献   

10.

Background

Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance.

Method/Principal Findings

We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples.

Conclusions/Significance

Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the importance of hydrological variability. With an increasing interest in reconnecting rivers to their floodplains, these invertebrates represent a key functional element in ensuring that such reconnections have demonstrable ecological value.  相似文献   

11.
The upstream migration, spawning, and death of anadromous, semelparous Pacific salmon brings nutrients to terrestrial and aquatic communities around the Pacific Rim. Many fishes use these resources but the relationship between fish body size and the reliance on salmon-derived nutrients might follow one of several patterns related to the onset of egg consumption with body size as fish grow, and possible shifts to alternative prey such as fishes as they grow larger still. In this study, these size-dependent hypotheses of marine subsidy use by resident Dolly Varden, Salvelinus malma, were tested using diet and stable isotope analyses. S. malma did not shift abruptly to a reliance on salmon eggs after they became large enough to eat eggs (i.e., no gape limitation). Rather, fish large enough to eat eggs but < 150 mm showed diets that blended salmon nutrients with aquatic insects, likely because they were spatially segregated from the highest concentration of spawning sockeye salmon, Oncorhynchus nerka. From intermediate through the largest sizes observed (150 to > 600 mm long) S. malma received ca. 80 % of their nutrients from salmon (eggs, flesh, and maggots that had scavenged dead salmon) based on diet analysis and stable isotope ratios despite being large enough to consume fish, as many similarly-sized salmonids do in other ecosystems. The few fish sampled in June, prior to the availability of salmon subsidies, had stable isotope signatures that also reflected heavy (ca. 90 %) reliance on marine sources, likely because they had eaten little since the end of the salmon run the previous fall. This apparent avoidance of piscivory in favor a rich yet pulsed marine subsidy highlights the importance of healthy salmon runs for the sake of not only the salmon but resident fishes that consume them.  相似文献   

12.
Although quantitative data on interspecific interactions within complex food webs are essential for evaluation of assumptions, hypotheses, and predictions of ecological theories; empirical studies yielding quantitative data on complex food webs are very limited. Ecological information on body size, habitat use, and seasonality of the component species of food webs aids in determining the mechanisms of food web structures. Ideally, ecological information on component species should be obtained contemporaneously when used to describe quantitative food webs, but such observations and sampling strategies are labor intensive and thus have been rarely described. We conducted year-round samplings of, and performed observations on, a temperate stream: the upper reaches of the Yura River, Kyoto, Japan. We derived quantitative data on the abundance, biomass, body mass, microhabitat use, and those seasonality of 7 fish species and 167 invertebrate taxa of the temperate stream food web. In addition, we estimated the per mass consumption rates of 7 predatory fish species, consuming 183 prey invertebrates, and the ratios between the per mass consumption rates of the 7 predatory fish species and the production rates of 78 prey invertebrates in each trophic link. All fishes and aquatic invertebrates were identified to species or lowest possible taxon. Our data may contribute to the construction of mathematical models explaining the behavior of stream communities/ecosystems.  相似文献   

13.
Humans are increasingly subsidizing and altering natural food webs via changes to nutrient cycling and productivity. Where human trophic subsidies are concentrated and persistent within natural environments, their consumption could have complex consequences for wild animals through altering habitat preferences, phenotypes and fitness attributes that influence population dynamics. Human trophic subsidies conceptually create both costs and benefits for animals that receive increased calorific and altered nutritional inputs. Here, we evaluated the effects of a common terrestrial human trophic subsidies, human food refuse, on population and phenotypic (comprising morphological and physiological health indices) parameters of a large predatory lizard (~2 m length), the lace monitor (Varanus varius), in southern Australia by comparison with individuals not receiving human trophic subsidies. At human trophic subsidies sites, lizards were significantly more abundant and their sex ratio highly male biased compared to control sites in natural forest. Human trophic subsidies recipient lizards were significantly longer, heavier and in much greater body condition. Blood parasites were significantly lower in human trophic subsidies lizards. Collectively, our results imply that human trophic subsidized sites were especially attractive to adult male lace monitors and had large phenotypic effects. However, we cannot rule out that the male-biased aggregations of large monitors at human trophic subsidized sites could lead to reductions in reproductive fitness, through mate competition and offspring survival, and through greater exposure of eggs and juveniles to predation. These possibilities could have negative population consequences. Aggregations of these large predators may also have flow on effects to surrounding food web dynamics through elevated predation levels. Given that flux of energy and nutrients into food webs is central to the regulation of populations and their communities, we advocate further studies of human trophic subsidies be undertaken to evaluate the potentially large ecological implications of this significant human environmental alteration.  相似文献   

14.
Food webs are strongly size‐structured so will be vulnerable to changes in environmental factors that affect large predators. However, mechanistic understanding of environmental controls of top predator size is poorly developed. We used streams to investigate how predator body size is altered by three fundamental climate change stressors: reductions in habitat size, increases in disturbance and warmer temperatures. Using new survey data from 74 streams, we showed that habitat size and disturbance were the most important stressors influencing predator body size. A synergistic interaction between that habitat size and disturbance due to flooding meant the sizes of predatory fishes peaked in large, benign habitats and their body size decreased as habitats became either smaller or harsher. These patterns were supported by experiments indicating that habitat‐size reductions and increased flood disturbance decreased both the abundance and biomass of large predators. This research indicates that interacting climate change stressors can influence predator body size, resulting in smaller predators than would be predicted from examining an environmental factor in isolation. Thus, climate‐induced changes to key interacting environmental factors are likely to have synergistic impacts on predator body size which, because of their influence on the strength of biological interactions, will have far‐reaching effects on food‐web responses to global environmental change.  相似文献   

15.
Interspecific killing is a key determinant of the abundances and distributions of carnivores, their prey, and nonprey community members. Similarity of body size has been proposed to lead competitors to seek similar prey, which increases the likelihood of interference encounters, including lethal ones. We explored the influence of body size, diet, predatory habits, and taxonomic relatedness on interspecific killing. The frequency of attacks depends on differences in body size: at small and large differences, attacks are less likely to occur; at intermediate differences, killing interactions are frequent and related to diet overlap. Further, the importance of interspecific killing as a mortality factor in the victim population increases with an increase in body size differences between killers and victims. Carnivores highly adapted to kill vertebrate prey are more prone to killing interactions, usually with animals of similar predatory habits. Family-level taxonomy influences killing interactions; carnivores tend to interact more with species in the same family than with species in different families. We conclude that although resource exploitation (diet), predatory habits, and taxonomy are influential in predisposing carnivores to attack each other, relative body size of the participants is overwhelmingly important. We discuss the implications of interspecific killing for body size and the dynamics of geographic ranges.  相似文献   

16.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

17.
We examined the relationship between body size of the riparian spider Nephila clavata and the contribution of allochthonous (aquatic insects) and autochthonous (terrestrial insects) sources to its diet using stable isotope analysis. During the study period from July to September, the body size of the females increased remarkably (about 60-fold) but that of males remained small. The biomass of both aquatic and terrestrial insects trapped on the spider webs increased with spider size, with the biomass of the former ranging between 30 and 70% of that of the terrestrial insects. The average relative contribution of aquatic insects to the diet of the spiders, calculated from δ13C values, was 40–50% in spiders in the early juvenile and juvenile stages, 35% in adult males and 4% in adult females. There was a significant negative relationship between the relative contribution of aquatic insects and body size of the female spiders. We conclude that aquatic insects might be an important seasonal dietary subsidy for small spiders and that these allochthonous subsidies may facilitate the growth of riparian spiders, which may in turn enable the spiders to feed on larger prey.  相似文献   

18.
Studies investigating effects of aquatic-derived resource subsidies have often found large effects on terrestrial systems. Those studies have mostly been performed on effects of subsidies derived from oceanic and riverine systems, and very few have considered effects of subsidies from freshwater lakes. However, since lakes can produce large quantities of emergent aquatic insects that end up on nearby land, it is likely that also freshwater-lake subsidies influence terrestrial systems. We performed sweep-net collections of aquatic and terrestrial invertebrates at varying distances from the shore on vegetation of islands of varying size, in two freshwater lakes in northern Sweden, as well as on the surrounding mainland. We found that the amounts of aquatic insects on terrestrial vegetation decreased with distance from the shore, and that they were the most abundant on small islands, presumably because small islands have a higher perimeter-to-area ratio. Web-building spiders responded positively to the aquatic subsidy by being the most abundant on small islands and by showing a positive relationship with aquatic insect biomass. However, distance from the shore showed no effects on the spiders. Our results strongly support the view that terrestrial systems are subsidized by lakes, and indicate that freshwater-lake subsidies are important for terrestrial invertebrate community structure on adjacent land. Further, our study shows that ecosystems should be treated as interdependent, not as self-contained units, and may as such be important for an increased understanding of the nature and importance of resource flows across ecosystem boundaries.  相似文献   

19.
Routes of aquatic allochthonous inputs (aquatic subsidies) to detrital food webs are studied, as is the effect of aquatic subsidies on the functional and taxonomic structure of soil invertebrate communities in coastal ecosystems. The study took place in the coastal zone of an oxbow lake of the Pra River in the Oka Reserve. The results indicate a strong dependence of soil animals in the coastal habitats on aquatic subsidies. Isotopic analysis shows that aquatic resources enter soil food webs not only via predators feeding on flying insects or aquatic prey, but also via saprophages decomposing organic debris of aquatic origin. The contribution of aquatic subsidies to the energy balance of soil invertebrates decreases rapidly with increasing distance from the lake. The fraction of aquatic carbon in tissues of collembolans and saprophages is negligible already a few meters from the water edge. The dependence of predatory invertebrates on aquatic resources can be traced at somewhat greater distance (tens of meters).  相似文献   

20.
Habitat coupling in lake ecosystems   总被引:21,自引:0,他引:21  
Lakes are complex ecosystems composed of distinct habitats coupled by biological, physical and chemical processes. While the ecological and evolutionary characteristics of aquatic organisms reflect habitat coupling in lakes, aquatic ecology has largely studied pelagic, benthic and riparian habitats in isolation from each other. Here, we summarize several ecological and evolutionary patterns that highlight the importance of habitat coupling and discuss their implications for understanding ecosystem processes in lakes. We pay special attention to fishes because they play particularly important roles as habitat couplers as a result of their high mobility and flexible foraging tactics that lead to inter-habitat omnivory. Habitat coupling has important consequences for nutrient cycling, predator-prey interactions, and food web structure and stability. For example, nutrient excretion by benthivorous consumers can account for a substantial fraction of inputs to pelagic nutrient cycles. Benthic resources also subsidize carnivore populations that have important predatory effects on plankton communities. These benthic subsidies stabilize population dynamics of pelagic carnivores and intensify the strength of their interactions with planktonic food webs. Furthermore, anthropogenic disturbances such as eutrophication, habitat modification, and exotic species introductions may severely alter habitat connections and, therefore, the fundamental flows of nutrients and energy in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号