首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previous ecomorphological studies of introduced land birds on oceanic islands have revealed several patterns consistent with the hypothesis that interspecific competition influenced the assembly process of that community. We extend one of these analyses to Bermuda, which differs from the previous islands in its size, latitude and isolation from the mainland. We tested for the presence of morphological overdispersion in surviving introduced passeriforms. Despite a possible predominance of random events in the assembly process due to Bermuda's small size and the presence of migrant species, the surviving passeriforms were morphologically overdispersed. The presence of this pattern supports the hypothesis that the assembly of the Bermuda passeriform community has been influenced by interspecific competition. This marks the third distinct community of island land birds in which this competitive pattern has been identified. This is particularly interesting because certain attributes of Bermuda and its avifauna make it more equivalent to communities in mainland refuges than avian assemblages on islands studied previously. This suggests that interspecific competition may have important effects on the structure of refuge communities.  相似文献   

2.
Summary Morphological analyses were conducted on finch species introduced to Oahu, Hawaii. As many as 25 species of finches representing four families (Emberizidae, Fringillidae, Ploecidae, Estrildidae) have been introduced to Oahu. Of these, 15 species currently have established wild populations. When compared with pools of 25 and 23 species introduced to Oahu, the 15 surviving species are morphologically overdispersed. This result is consistent with the hypothesis that competition has influenced the outcome of these introductions. We also tested the hypothesis that surviving introduced finches in one habitat (sugarcane fields) were morphologically overdispersed. When the seven surviving finch species found in sugarcane were compared with the pools of 25 and 23 species, they too were morphologically overdispersed. However, when the seven sugarcane species were compared with a species pool consisting of only the surviving 15 species found across Oahu, they were not morphologically overdispersed. This result suggests that morphological analyses of community structure based only on comparisons of assemblages of surviving species may be biased by a Narcissus effect.  相似文献   

3.
Morphological relationship among sympatric animal species have often been seen as indirect evidence for competition. Many early ecomorphological studies revealed patterns that were taken as indicating character displacement and character release, driven by competition or lack thereof. These patterns may result from a coevolutionary morphological response or from species sorting according to size. Thus, the relationship between morphology and competition may be crucial for understanding both the morphological evolution of animals and the role of competition in structuring communities. Some earlier research perceived as indicating morphological relationships conditioned by interaction of species was conducted on mammals, particularly carnivores. Subsequent criticism in the ecological literature demonstrated that many of the perceived patterns could not be statistically confirmed, thus calling into question this line of evidence for competition. More recent ecological literature relies on strong statistical analyses and careful consideration both of guild composition and of which morphological traits should be examined. This literature, resting largely on mammals, includes several cases that suggest a coevolutionary morphological response to interspecific competition. These studies have focused on the thropic apparatus directly related to food procurement by mammals — the teeth. Island mammals often show striking morphological patterns, some of which have been interpreted as resulting from release from competition with mainland species that have not reached islands. However, few of these patterns were critically evaluated to demonstrate their support for the hypothesis of character release. Despite several decades of interest and research, many questions regarding competitively induced morphological patterns remain unresolved and require further research. Mammals are especially promising subjects for such researh.  相似文献   

4.
The insular limestone karsts of northern Vietnam harbor a very rich biodiversity. Many taxa are strongly associated with these environments, and individual species communities can differ considerably among karst areas. The exact processes that have shaped the biotic composition of these habitats, however, remain largely unknown. In this study, the role of two major processes for the assembly of snail communities on limestone karsts was investigated, interspecific competition and filtering of taxa due to geographical factors. Communities of operculate land snails of the genus Cyclophorus were studied using the dry and fluid‐preserved specimen collections of the Natural History Museum, London. Phylogenetic distances (based on a Bayesian analysis using DNA sequence data) and shell characters (based on 200 semilandmarks) were used as proxies for ecological similarity and were analyzed to reveal patterns of overdispersion (indicating competition) or clustering (indicating filtering) in observed communities compared to random communities. Among the seven studied karst areas, a total of 15 Cyclophorus lineages were found. Unique communities were present in each area. The analyses revealed phylogenetic overdispersion in six and morphological overdispersion in four of seven karst areas. The pattern of frequent phylogenetic overdispersion indicated that competition among lineages is the major process shaping the Cyclophorus communities studied. The Coastal Area, which was phylogenetically overdispersed, showed a clear morphological clustering, which could have been caused by similar ecological adaptations among taxa in this environment. Only the community in the Cuc Phuong Area showed a pattern of phylogenetic clustering, which was partly caused by an absence of a certain, phylogenetically very distinct group in this region. Filtering due to geographical factors could have been involved here. This study shows how museum collections can be used to examine community assembly and contributes to the understanding of the processes that have shaped karst communities in Vietnam.  相似文献   

5.
Community structure, abundance, and morphology   总被引:2,自引:0,他引:2  
The role of interspecific competition in structuring communities has been a highly debated issue for the last two decades. The nonrandom nature of morphological patterns within communities has been at the center of this controversy. Null models addressing community-wide dispersions in morphology have produced equivocal results and may be based on assumptions that are too restrictive (e.g., competitive exclusion or displacement). If morphological distinctiveness allows species to escape competitive pressures and exhibit higher densities, then a positive relationship should exist between morphological dissimilarity and abundance. We develop a suite of models that evaluates patterns in abundance that are associated with the morphological proximity of a species to other competitors. We evaluated the relationship between morphological distance and abundance from a variety of morphological perspectives, from those representing strictly diffuse interactions to those representing only interactions between a species and its nearest neighbor in morphological space. These models were sufficiently powerful to detect positive associations between abundance and morphological differences in a nocturnal desert rodent guild for which the effects of competition on structure are well established. Models such as these may be more useful than traditional models evaluating morphological dispersions for many reasons. They do not require that communities reach equilibrium before competitive interactions give rise to deterministic structure. They do not suffer from limitations of potentially inaccurate faunal pools or from phylogenetic constraints. Lastly, they may be used as a diagnostic tool in comparative studies to determine the degree to which competitive interactions structure communities.  相似文献   

6.
Intransitive competition has the potential to be a powerful contributor to species coexistence, but there are few proposed biological mechanisms that could create intransitivities in natural communities. Using a three‐species model of competition for space, we demonstrate a mechanism for coexistence that combines a colonization–competition tradeoff between two species with the ability of a third species to preempt space from the other competitors. The combination of differential abilities to colonize, preempt, and overtake space creates a community where no single species can exclude both of its competitors. The dynamics of this kind of community are analogous to rock‐paper‐scissors competition, and the three‐species community can persist even though not all pairs of species can coexist in isolation. In distinction to prior results, this is a mechanism of intransitivity that does not require nonhierarchical local interference competition. We present parameter estimates from a subtidal marine community illustrating how documented competitive traits can lead to preemption‐based intransitivities in natural communities, and we describe methods for an empirical test of the occurrence of this mechanism.  相似文献   

7.
The competition–relatedness hypothesis of Darwin states that competition is greater among species that are phylogenetically closely‐related, and such species will tend to appear in separate communities (i.e. the species within communities will be phylogenetically overdispersed). Many studies have tested (and mainly refuted) this hypothesis for plant and bacterial communities. Results for the few studies with avian species are not conclusive. We tested Darwin's hypothesis for waterbirds using a set of open, artificial fish ponds in Doñana, south‐western Spain, that provide relatively homogeneous habitat where competition is likely to be intense. Monthly counts of 38 ponds (for 11 months, i.e. 418 censuses) recorded 76 bird species. Darwin's hypothesis predicted that species appearing in the same pond would be less related phylogenetically than expected if species occurred randomly across ponds and months according to the structure of the overall community across the entire pond complex. However, the waterbird community did not show a predominantly overdispersed pattern, suggesting that interspecific competition among phylogenetically related species was not the main force structuring communities. In contrast, the proportion of clustered communities was higher than expected throughout the annual cycle, indicating that related waterbirds tend to co‐occur on the same site, probably because they have similar microhabitat preferences. Clustering patterns were mainly driven by abundant and closely related duck species, and also by shorebirds. However, few individual pond communities remained significantly different from random after correction for multiple testing. Furthermore, the probability of co‐occurrence of a given species pair was negatively related to the phylogenetic distance between them. In conclusion, our study shows waterbird communities are mainly phylogenetically clustered or random, and do not support the competition‐relatedness hypothesis.  相似文献   

8.
Abstract The finding that passeriform birds introduced to the islands of Hawaii and Saint Helena were more likely to successfully invade when fewer other introduced species were present has been interpreted as strong support for the hypothesis that interspecific competition influences invasion success. I tested whether invasions were more likely to succeed when fewer species were present using the records of passeriform birds introduced to four acclimatization districts in New Zealand. I also tested whether introduction effort, measured as the number of introductions and the total number of birds released, could predict invasion outcomes, a result previously established for all birds introduced to New Zealand. I found patterns consistent with both competition and introduction effort as explanations for invasion success. However, data supporting the two explanations were confounded such that the greater success of invaders arriving when fewer other species were present could have been due to a causal relationship between invasion success and introduction effort. Hence, without data on introduction effort, previous studies may have overestimated the degree to which the number of potential competitors could independently explain invasion outcomes and may therefore have overstated the importance of competition in structuring introduced avian assemblages. Furthermore, I suggest that a second pattern in avian invasion success previously attributed to competition, the morphological overdispersion of successful invaders, could also arise as an artifact of variation in introduction effort.  相似文献   

9.
Although phylogenetic‐based approaches have been frequently used to infer ecological processes, they have been increasingly criticized in recent years. To date, the factors that affect phylogenetic signals and further the ability of phylogenetic distance to predict trait dispersion have been assumed but not empirically tested. Therefore, we investigate which factors potentially influence the ability of phylogenetic distance to predict trait dispersion. We quantified the phylogenetic and trait dispersions across size classes and spatial scales in a 9‐ha old‐growth temperate forest dynamics plot in northeastern China. Phylogenetic signals at the community level were generally lower than those at the species pool level, and phylogenetically clustered communities showed lower phylogenetic signals than did overdispersed communities. This pattern might explain the other three findings of our study. First, phylogenetically overdispersed communities performed better at predicting trait dispersion than did clustered communities. Second, the mean pairwise distance (MPD)‐based metric exhibited a stronger correlation with trait dispersion than did the mean nearest taxon distance (MNTD)‐based metric. Finally, the MNTD‐based metric showed that the prediction accuracy for trait dispersion decreased with increasing spatial scales, whereas its effects were weak on the MPD‐based metric. In addition, phylogeny could not determine the dispersions of all functional axes but was able to predict certain traits depending on whether they were evolutionarily conserved. These results were conserved when we removed the effects of space and environment. Our findings highlighted that using phylogenetic distance as a proxy of trait similarity might work in a temperate forest depending on the species in local communities sampled from total pool as well as the traits measured. Utilizing these rules, we should rethink the conclusions of previous studies that were based on phylogenetic‐based approaches.  相似文献   

10.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

11.
Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland counterparts. Quite the contrary, we found that rates and extent of diversification were comparable--Anolis adaptive radiation is not an island phenomenon. However, mainland and Caribbean anoles occupy different parts of morphological space; in independent colonizations of both island and mainland habitats, island anoles have evolved shorter limbs and better-developed toe pads. These patterns suggest that the two areas are on different evolutionary trajectories. The ecological causes of these differences are unknown, but may relate to differences in predation or competition among mainland and island communities.  相似文献   

12.
Debate on the relative importance of competition for resources and trophic interactions in shaping the biological diversity of living communities remains unsettled after almost a century. Recently, dramatic increases in ungulate populations have provided a useful quasi-experiment on the effects of unrestrained ungulates on forest ecology. The islands of Haida Gwaii (Canada) offer a unique situation to investigate the potential of large herbivores to control temperate forest community structure and diversity. Black-tailed deer Odocoileus hemionus Merriam, native to adjacent mainland areas of British Columbia, were introduced in 1878 and spread to all but a few islands. Because deer were not native to the archipelago, islands that still lack deer provide a rare instance of temperate forest vegetation and fauna that developed in the absence of large herbivores. The colonisation of different islands at different times, and the absence of significant predation allow us to assess whether and how a large herbivore can exert “top-down” control on vegetation and its associated fauna. We studied plant communities in forest interior and shoreline, on seven small islands of varying browse history. Three islands were untouched by deer, deer had been resident for about 15 years on two, and on another two deer had been present for more than 50 years. Without deer, vegetation in the understorey and/or shrub layer was dense or very dense. Structure and composition varied markedly within and between shoreline and interior communities. Without deer, shoreline communities were dominated by species absent from islands with deer. Where deer had been present for less than 20 years most plant species characteristic of shorelines on islands without deer were already absent or scarce, but in the forest interior species richness was less affected and extensive shrub thickets remained. On islands where deer had been present for >50 years vegetation below the browse line was extremely simplified, converging in both forest interior and shoreline towards an open assemblage of a few deer-tolerant species, basically two coniferous trees. This top down effect on the plant community reflected up the food chain so that understorey invertebrate and shrub-dependent songbird communities became simplified. In contrast, species densities of litter arthropods (especially weevils and millipedes) were highest where deer were present for >50 years. Canopy birds were unaffected by deer presence. In the absence of predators, major climatic stress or other means to control the herbivore, deer browsing created greatly simplified plant and animal communities.  相似文献   

13.
Many bird species were extirpated or became extinct when prehistoric man reached oceanic islands We list > 200 species of extinct island birds only recorded as sub-fossils and which probably vanished due to prehistoric man In addition we list c 160 cases where an extant species has been found as subfossil on islands where it no longer occurs Several species today considered endemic to single islands of island groups had a much wider distribution in the past Biogeographic analyses of insular avifaunas are almost meaningless it the extensive prehistoric extinctions are not taken into account
Most extinct species belong to Anatidae Rallidae and Drcpanididae while local extirpations are numerous among doves and seabirds Smaller birds are rare mainly due to sampling bias and taphonomic factors The bird populations were depleted mainly by overhunting predation by introduced vertebrates and alteration of the original vegetation
Prehistoric humans on islands although dependent on limited animal resources regularly failed to exploit these in a sustainable way Several cases where human populations disappeared from islands in the Pacific may have been due to over-exploitation of native animals
Prehistoric man reached most tropical and temperate islands and most of the few remaining island faunas have been severely depleted in historic times The prehistoric extinctions emphasize the extreme vulnerability and value of the very few pristine island faunas that still remain  相似文献   

14.
Aim To assess how ant species richness and structure of ant communities are influenced by island age (disturbance history) in a dynamic archipelago. Location Cabra Corral dam, Salta Province, north‐west Argentina (25°08′ S, 65°20′ W). Methods Ant species richness on remaining fragments (islands) of a flooded forest was determined, as well as island area, isolation and age. Simple linear regressions were performed to assess relationships between ant species richness and those insular variables. Furthermore, a stepwise multiple linear regression analysis was conducted in order to determine the relative influence of each insular variable on ant species richness. Islands were categorized in two age classes (old and young) and co‐occurrence analyses were applied within each class to evaluate changes in community structure because of interspecific competition. Results Simple regression analyses indicated a moderate, positive effect of island area on ant species richness. Weak, marginally non‐significant relationships were found between ant species richness and both island isolation and island age, showing the tendency for there to be a decrease in ant species richness with island isolation and that ant species richness might be higher in old islands. The multiple regression analysis indicated that island isolation and age had no significant effects on the number of ant species, island area being the only independent variable retained in the analysis. On the contrary, whereas a random pattern of species co‐occurrence was found on young islands, ant communities in old islands showed a significantly negative pattern of species co‐occurrence, suggesting that the effect of competition on community structure was stronger on older islands than on younger islands. Main conclusions Island area was the most important variable explaining ant species richness on the islands of Cabra Corral dam. However, both island isolation and island age (or disturbance history) might also contribute to shape the observed community patterns. The present study also shows that island age significantly affects the strength with which interspecific interactions structure ant communities on islands.  相似文献   

15.
Does predation maintain tit community diversity?   总被引:2,自引:0,他引:2  
European tits of the genus Parus constitute a complex group of coexisting boreal birds. Here we present a survey of the distribution of three coniferous-living Parus species and one of their main predators, the pygmy owl ( Glaucidium passerinum ), on nine isolated islands in Scandinavia. On all islands the coal tit ( Parus ater ) is the sole tit species when the pygmy owl is absent. The two larger species, the willow tit ( P. montanus ) and the crested tit ( P. cristatus ), only coexist with the coal tit when pygmy owls are present. We suggest that the coexistence of willow tits, crested tits and coal tits is the result of a combination of competition for food and predator-safe foraging sites. The smaller coal tit is superior in exploitation competition for food, while the two larger species have an advantage in interference competition for predator-safe foraging sites. The association between the distribution of the pygmy owl and the two larger tit species on isolated islands in Scandinavia is consistent with the idea that the pygmy owl is a keystone predator.  相似文献   

16.
One classic explanation for the remarkable diversity of flower colors across angiosperms involves evolutionary shifts among different types of pollinators with different color preferences. However, the pollinator shift model fails to account for the many examples of color variation within clades that share the same pollination system. An alternate explanation is the competition model, which suggests that color divergence evolves in response to interspecific competition for pollinators, as a means to decrease interspecific pollinator movements. This model predicts color overdispersion within communities relative to null assemblages. Here, we combine morphometric analyses, field surveys, and models of pollinator vision with a species‐level phylogeny to test the competition model in the primarily hummingbird‐pollinated clade Iochrominae (Solanaceae). Results show that flower color as perceived by pollinators is significantly overdispersed within sites. This pattern is not simply due to phylogenetic history: phylogenetic community structure does not deviate from random expectations, and flower color lacks phylogenetic signal. Moreover, taxa that occur in sympatry occupy a significantly larger volume of color space than those in allopatry, supporting the hypothesis that competition in sympatry drove the evolution of novel colors. We suggest that competition among close relatives may commonly underlie floral divergence, especially in species‐rich habitats where congeners frequently co‐occur.  相似文献   

17.
By sharing geographic space, species are forced to interact with one another and the contribution of this process to evolutionary and ecological patterns of individual species is not fully understood. At the same time, species turnover makes that species composition varies from one area to another, so the analysis of biological interaction cannot be uncoupled from the spatial context. This is particularly important for clades that show high degree of specialization such as hummingbirds, where any variation in biotic pressures might lead to changes in morphology. Here, we describe the influence of biological interactions on the morphology of Hylocharis leucotis by simultaneously considering potential competition and diet resources. We characterized the extent of local potential competition and local available floral resources by correlating two measurements of hummingbird diversity, floral resources and the size of morphological space of H. leucotis along its geographic distribution. We found that H. leucotis shows an important morphological variability across its range and two groups can be recognized. Surprisingly, morphological variation is not always linked to local hummingbird richness or the phylogenetic similarity of. Only in the southern part of its distribution, H. leucotis is morphologically more variable in those communities where it coexist with closely related hummingbird species. We also found that morphological variation in H. leucotis is independent from the availability of floral resources. Our results suggest that abiotic factors might be responsible for morphological differences across populations in Hylocharis leucotis being biological interactions of minor importance.  相似文献   

18.
Soil biota have been credited with helping to maintain native plant diversity in multiple systems. Recent evidence suggests that introduced species may be less responsive to soil communities than most native species. If response to soil communities is correlated with invasive ability, we predict that introduced pest species should be less responsive to soil communities than introduced non-pest species or natives. In this study we test whether response to soil biota from two diverse grassland communities differs between four introduced pest, six introduced non-pest, and five native species in grasses in Yolo County, California. We found no variation in plant size or response to soil biota between introduced pest and introduced non-pest species, and these were combined in subsequent analyses. Overall, all introduced species grew significantly faster than native species. Native species showed greater variation in response to soil communities than both groups of introduced species, and native species’ response varied with soil community. Variation among native species’ response to soil nutrients and biota through processes like soil feedbacks may be key to maintaining diversity across landscapes in uninvaded environments. Introduced species appear less responsive to landscape variability in soil communities, which may allow them to establish and dominate plant communities in multiple habitats.  相似文献   

19.
Patterns of bird invasion are consistent with environmental filtering   总被引:1,自引:0,他引:1  
Predicting invasion potential has global significance for managing ecosystems as well as important theoretical implications for understanding community assembly. Phylogenetic relationships of introduced species to the extant community may be predictive of establishment success because of the opposing forces of competition/shared enemies (which should limit invasions by close relatives) versus environmental filtering (which should allow invasions by close relatives). We examine here the association between establishment success of introduced birds and their phylogenetic relatedness to the extant avifauna within three highly invaded regions (Florida, New Zealand, and Hawaii). Published information on both successful and failed introductions, as well as native species, was compiled for all three regions. We created a phylogeny for each avifauna including all native and introduced bird species. From the estimated branch lengths on these phylogenies, we calculated multiple measurements of relatedness between each introduced species and the extant avifauna. We used generalized linear models to test for an association between relatedness and establishment success. We found that close relatedness to the extant avifauna was significantly associated with increased establishment success for exotic birds both at the regional (Florida, Hawaii, New Zealand) and sub‐regional (islands within Hawaii) levels. Our results suggest that habitat filtering may be more important than interspecific competition in avian communities assembled under high rates of anthropogenic species introductions. This work also supports the utility of community phylogenetic methods in the study of vertebrate invasions.  相似文献   

20.
Interspecific interactions affect habitat use and subsequent morphological adaptation in Anolis lizards. We examined populations of two species of Anolis lizards that evolved in the species-rich communities of Cuba and are now widespread in the Bahamas. Because the species occupy islands in the Bahamas that vary in the number of lizard species present and other characteristics, we predicted that directional selection should have led to morphological differentiation. In particular, we expected that populations on one-species islands should have evolved toward a generalist morphology because of the lack of competitors. Divergence in both species has been adaptive; populations that use wider perches have longer legs. Nonetheless, these differences are relatively minor, and none of the populations appears to have differentiated from its ancestral “ecomorph” type toward a more generalized morphology. This stasis mirrors a trend observed in the radiation of Caribbean anoles, which exhibits repeated instances of evolutionary specialization, but few or no cases of reversion to a more generalized condition. The explanation for this directionality of evolution is not obvious but probably involves the tendency of specialized species to continue using and further adapting the niches for which they are specialized even as conditions change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号