首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou X  Zhou J 《Proteomics》2006,6(5):1415-1426
We report here the development and characterization of protein microarrays fabricated on nanoengineered 3-D polyelectrolyte thin films (PET) deposited on glass slide by consecutive adsorption of polyelectrolytes via self-assembly technique. Antibodies or antigens were immobilized in the PET-coated glass slides by electrostatic adsorption and entrapment of porous structure of the 3-D polymer film and thus establishing a platform for parallel analysis. Both antigen and antibody microarrays were fabricated on the PET-coated slides, and direct and indirect immunoassays on protein microarrays for multiple-analyte detection were demonstrated. Microarrays produced on these PET-coated slides have consistent spot morphology and provide performance features needed for proteomic analysis. The protein microarrays on the PET films provide LOD as low as 6 pg/mL and dynamic ranges up to three orders of magnitude, which are wider than the protein microarrays fabricated on aldehyde and poly-L-lysine functionalized slides. The PET films constructed by self-assembly technique in aqueous solution is green chemistry based, cost-effective method to generate 3-D thin film coatings on glass surface, and the coated slide is well suited for immobilizing many types of biological molecules so that a wide variety of microarray formats can be developed on this type of slide.  相似文献   

2.
The dependence of the antigen-binding activity of immobilized antibodies on pH of a saturating buffer has been investigated. We analyzed 28 monoclonal antibodies (MCAs) produced by various hybridomas to three virus antigens, i.e., the nuclear p23 protein of hepatitis C virus (C core protein p23), p24 protein of HIV 1, and the surface antigen of hepatitis B virus (HBsAg). Antibodies were adsorbed on the surfaces of immune plates in acidic (pH 2.8), neutral (pH 7.5), and alkaline (pH 9.5) buffers. The binding of labeled antigens, i.e., biotinylated or conjugated with horseradish peroxidase, with immobilized antigens was tested. It was shown that 10 out of 28 analyzed MCAs (36%) considerably better preserved their antigen-binding activity if their passive adsorption was carried out on the surface of polystyrene plates in an acidic buffer (pH 2.8). This approach allowed constructing a highly sensitive sandwich method for HBsAg assay with a minimal reliably determined antigen concentration of 0.013–0.017 ng/ml. The described approach may be recommended for the optimization of sandwich methods and solid-phase competitive methods.  相似文献   

3.
This paper reports the adsorption of Bovine Serum Albumin (BSA) onto Dielectric Barrier Discharge (DBD) processed Poly(methyl methacrylate) (PMMA) surfaces by a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) technique. The purpose is to study the influence of DBD processing on the nature and scale of BSA adsorption on PMMA surface in vitro. It was observed that DBD processing improves the surface wettability of PMMA film, a fact attributable to the changes in surface chemistry and topography. Exposure of the PMMA to Phosphate Buffed Saline (PBS) solution in the QCM-D system resulted in surface adsorption which reaches an equilibrium after about 30 minutes for pristine PMMA, and 90 minutes for processed PMMA surface. Subsequent injection of BSA in PBS indicated that the protein is immediately adsorbed onto the PMMA surface. It was revealed that adsorption behaviour of BSA on pristine PMMA differs from that on processed PMMA surface. A slower adsorption kinetics was observed for pristine PMMA surface, whilst a quick adsorption kinetics for processed PMMA. Moreover, the dissipation shift of protein adsorption suggested that BSA forms a more rigid structure on pristine PMMA surface that on processed surface. These data suggest that changes in wettability and attendant chemical properties and surface texture of the PMMA surface may play a significant role in BSA adsorption process.  相似文献   

4.
Enzyme immobilization is an ever-growing research-area for both analytical and industrial applications. Of critical importance in this area are the effects of immobilization procedures upon the functionality of the immobilized biomolecules. Both beneficial and detrimental effects can be conferred through the selection and tuning of the immobilization procedure. Quartz-crystal microbalance with dissipation (QCM-D) has been previously used to great effect in tracking alterations to thin films of biomolecules immobilized onto quartz transducers.In this study, we investigate the ability of QCM-D to track and monitor film parameters of a monolayer of laccase immobilized on a series of self-assembled monolayers (SAMs), differing in lateral density of binding residues on the SAM and height of the SAM from the quartz surface. Both mass gains and rheological parameters for these varying surfaces were measured and trends later compared to the apparent enzyme kinetics of the immobilized laccase films, assessed electroanalytically (Paper II in this two part study). For covalent attachment of proteins, both shear and viscosity were increased relative to physically adsorbed proteins. An increase in lateral density of protein-binding surface of the SAM components was shown to increase the shear/viscosity of the resultant film while an increase in distance from the electrode (through incorporation of lysine linkers) was shown to decrease the shear/viscosity while simultaneously increasing the wet mass gain of the films. Shear and viscosity may be indicative of both enzyme denaturation and increased lateral protein packing within the film structure hence it is assumed that less distortion occurs with the inclusion of linkers which allow for more optimal protein immobilization.  相似文献   

5.
Sets of monoclonal antibodies have been prepared using two soybean seed lipoxygenase isoenzymes as the antigens. The antibodies were characterized by ELISA, Western blot analysis, immunoprecipitation, and in kinetic assays. Several antibodies displaying selectivity for the two closely related polypeptides were obtained, while the majority of the antibodies generated were crossreactive. Antibodies specific to the native and denatured forms of the two proteins were also obtained. Two of the monospecific antibodies were shown to immunoprecipitate the appropriate isoenzyme selectively from a mixture. When these antibodies were immobilized on agarose, they were successful in the immunoaffinity purification of the individual isoenzymes. In kinetic experiments certain antibodies were found to influence catalysis upon incubation with lipoxygenase. Antibodies which both inhibited and stimulated catalysis were identified.  相似文献   

6.
Human pancreatic lipase-related protein 2 (HPLRP2) was identified for the first time in pancreatic juice using specific anti-peptide antibodies and purified to homogeneity. Antibodies were raised in the rabbit using a synthetic peptide from the HPLRP2 protein sequence deduced from cDNA. Western blotting analysis showed that these antibodies did not react with classical human pancreatic lipase (HPL) or human pancreatic lipase-related protein 1 (HPLRP1) but cross-reacted with native rat PLRP2 (RPLRP2), as well as with recombinant rat and guinea-pig PLRP2 (GPLRP2). Immunoaffinity chromatography was performed on immobilized anti-recombinant HPLRP2 polyclonal antibodies to purify native HPLRP2 after conventional chromatographic steps including gel filtration and chromatrography on an anion-exchanger. The substrate specificity of HPLRP2 was investigated using various triglycerides, phospholipids and galactolipids as substrates. The lipase activity on triglycerides was inhibited by bile salts and weakly restored by colipase. The phospholipase activity of HPLRP2 on phospholipid micelles was very low. A significant level of galactolipase activity was measured using monogalactosyldiglyceride monomolecular films. These data suggest that the main physiological function of HPLRP2 is the hydrolysis of galactolipids, which are the main lipids present in vegetable food.  相似文献   

7.
The antigenicity of bovine IgG1 and IgG2a adsorbed on a polydimethysiloxane (PEP) elastomer, on a widely used polystyrene (Imm 2, Dynatech) or immobilized as biotinylated proteins to streptavidin covalently bound to polystyrene (SA-PS) was compared using various monoclonal (mAbs) and polyclonal antibodies (pAb) to bovine IgG. The IgGs were either adsorbed as native proteins or pre-denatured with 6M Guanidine-HCl (Gu-HCl) or 6 M Gu-HCl/0.1% 2-mercaptoethanol. In special situations, bovine and human IgG was immobilized by secondary adsorption to an albumin monolayer adsorbed on either PEP or Imm 2. Results indicate that pre-denaturation of IgGs with 6 M Gu-HCl/2-mercaptoethanol destroys all antigenicity whereas those IgGs pretreated with 6 M-GuHCl are indistinguishable in their antigenicity from the IgGs adsorbed to either PEP or Imm 2 without such treatment. When immobilized on SA-PS, Gu-HCl-treated IgGs were significantly less detectable, especially when tested using mAbs. In general, IgGs adsorbed on PEP or Imm 2 were less antigenic than when immobilized on SA-PS. However, two monoclonals specific for the IgG2a(A2) allotypic variant, favored the adsorbed protein and one polyclonal best recognized the IgG2a(A1) variant adsorbed on Imm 2 rather than when adsorbed on PEP or immobilized on SA-PS. Both IgG1 and IgG2a, bound by apparent protein-protein interactions to an albumin monolayer, were significantly more detectable than when directly adsorbed on either Imm 2 or PEP. Using 125l-antibody or its Fab fragment to reduce steric hindrance in detection, we observed the same differences in detectability as when measured by enzyme-linked immunosorbent assay. Failure to identify a steric hindrance effect and the preference of some antibodies for adsorbed allotypic variants, support the concept of adsorption-induced conformational change (AICC). We conclude that proteins adsorbed as a monolayer on the PEP elastomer used to form the envelope of silicone breast implants are conformationally altered, but not necessarily to the same extent or the same manner as when adsorbed on polystyrene. The significantly great antigenicity of secondarily adsorbed IgG suggests that it may be present in near native conformation. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
Quartz crystal microbalance (QCM) resonance measurements were used to examine the surface charge characteristics of cytochrome P450 forms and the influence of charge on the docking of redox partners like cytochrome b5. The distal surface of cytochrome P450 (CYP)101 (pI = 4.5), relative to the heme, is fairly anionic, as is the proximal surface. The latter, however, also has two cationic clusters. A considerably greater extent of CYP101 binding was seen to the cationic, polyethylene-surfaced resonators. CYP2B4 (pI = 8.5) preferentially bound to the polyanionic, polystyrene sulfonate-surfaced resonators. Cytochrome b5 is an acidic protein that had a preferential binding to the poly(ethyleneimine (PEI)-surfaced resonators. When binding to CYP2B4-surfaced films, cytochrome b5 preferentially bound to those cytochrome P450 molecules that were adsorbed to cationic (PEI) films. It is suggested that adsorption of CYP2B4 to an anionic poly(styrenesulfonate) (PSS) surface is with cationic clusters that include the cytochrome b5 docking domain. This diminishes the extent of docking of the cytochrome b5. In contrast, when CYP2B4 is adsorbed to a cationic film the proximal surface with the cytochrome b5-docking site is available for cytochrome b5 binding. A film of the polycation PEI was adsorbed to the silver QCM surface. It formed polymer islands when viewed with atomic force microscopy. Polyanionic PSS was adsorbed intermittently with the PEI. By the third and fourth layer of polyions the polymer islands were essentially merged and protein adsorption as a fourth or fifth layer formed a nearly continuous film. CYP101 was seen to adsorb as globules with a molecular diameter of about 10 nm. CYP2B4 adsorbed to the polyionic films had a slightly elliptical globular shape, also with a molecular diameter of about 10 nm.  相似文献   

9.
Ultrathin poly(methyl methacrylate) PMMA films were prepared on gold substrates by spin coating PMMA dissolved in toluene. By varying the concentration of PMMA, spin coating speed and curing condition, we obtained very smooth and ultrathin PMMA films. The PMMA films were transformed into highly reactive film containing carboxylic functionalities using UV/O(3) irradiation. These films were shown to remain stable and reactive for at least one week. We then demonstrated the application of the UV/O(3) treated PMMA films for the detection of microRNAs using a label-free detection method called total internal reflection ellipsometry (TIRE). A limit of detection of 10 pM was established. The technique proposed here is a simple and quick method for generating carboxylic functional films for label-free bioanalytical detection techniques.  相似文献   

10.
A Sepharose derivative coupled with a chymostatin analogue, Gly-Gly-L-Leu-L-phenylalaninal (Pheal), was prepared. A number of native and chemically modified proteases were applied on a column of the adsorbent. Bovine chymotrypsins [EC 3.4.21.1] and Streptomyces griseus protease B were adsorbed strongly at pH 8.2. The affinities of these enzymes under various conditions were measured quantitatively by frontal chromatography in terms of the dissociation constant (Kd) of the enzyme-immobilized ligand complex. The pH dependence of the Kd value of alpha-chymotrypsin was consistent with that of the inhibition constant (Ki) of the enzyme for a corresponding soluble peptide aldehyde. Anhydro-chymotrypsin, in which the active site Ser-195 is converted to dehydroalanine, was not adsorbed. Ser-195 proved to be essential for the binding. The frontal chromatography method also gave the amount of the immobilized ligand that can interact with the enzyme. It was extremely small compared with the amount of the immobilized ligand determined by amino acid analysis. This was explained on the basis of the structural features of the agarose gel.  相似文献   

11.
The hydration-dehydration process of an adsorbed human serum albumin film has been studied using atomic force microscopy (AFM) and a quartz crystal microbalance (QCM). All measurements were performed with identically prepared protein films deposited on highly hydrophilic substrates. Both techniques are shown to be suitable for following in situ the kinetics of protein hydration, and for providing quantitative values of the adsorbed adlayer mass. The results obtained by the two methods have been compared and combined to study changes of physical properties of the films in terms of viscosity, shear, Young's modulus, density and film thickness. These properties were found to be reversible during hydration-dehydration cycles.  相似文献   

12.
Antibodies were raised against six synthetic peptides corresponding to overlapping amino acid sequences (106 through 145) from a putative DNA binding domain in simian virus 40 (SV40) large-T antigens. All six antipeptide sera immunoprecipitated large-T from crude extracts of SV40-transformed cells, but the efficiency varied widely; in general, antibodies to the longer peptides produced the strongest anti-large-T activity. Antisera were purified by immunoaffinity chromatography on immobilized peptide. The purified antisera recognized only some forms of large-T; full-sized large-T from transformed cells, super-T from SV3T3 C120 cells, and 70,000-dalton T-antigen from Taq-BamHI cells were immunoprecipitated, whereas large-T from productively infected cells reacted irreproducibly, and the full-sized protein, synthesized in vitro or eluted from sodium dodecyl sulfate-containing gels, and the 33,000- and 22,000-dalton truncated large-Ts from Swiss SV3T3 and MES2006 cells, respectively, were not immunoprecipitated. This pattern of reactivity was explained when extracts were fractionated by sucrose density centrifugation, and it was found that only rapidly sedimenting forms of large-T were immunoprecipitated by the antipeptide sera; that is, large-T complexed with nonviral T antigen was detected, whereas lighter forms were not detected. Cascade immunoprecipitations did not support the view that this result was caused by the low affinity of the peptide antisera for large-T, and Western blotting experiments confirmed that the peptide antisera react directly with immobilized, monomeric large-T but not with nonviral T antigen. Immunoprecipitation assays to detect large-T:nonviral T antigen complexes bound specifically to fragments of SV40 DNA showed that under conditions of apparent antibody excess, DNA still bound to the complex.  相似文献   

13.
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.  相似文献   

14.
Isolated Thermomyces lanuginosus lipase (TLL) was immobilized by different protocols on the polyacrylonitrile nanofibers membrane. The conditions for immobilization of TLL were optimized by investigating effect of protein concentration, time and temperature on the extent of immobilization. The effect of immobilization on the catalytic activity and stability of lipase was studied thoroughly. The immobilized TLL was used as biocatalyst for geranyl acetate synthesis with geraniol and vinyl acetate as substrates and their performance was compared with free enzyme. The TLL immobilized by physical adsorption shows higher transesterification and hydrolytic activities than that of covalently linked or native TLL. There was 32 and 9 fold increase in transesterification activity of TLL immobilized by adsorption and covalent bonding, while hydrolytic activity increases only by 3.6 and 1.8 fold respectively. The optimum conditions for immobilization in both the cases were immobilization time 90–150 min, temperature 45 °C and protein concentration of 2 mg/ml. The percentage conversion of ester was more than 90% and 66% in case of physically adsorbed and covalently bonded enzyme respectively as compared to native one. However, covalently immobilized TLL shows higher operational stability than native and physically adsorbed TLL.  相似文献   

15.
The use of spacers to distance an immobilized antibody from the surface of a support matrix introduces flexibility, which can reduce steric interferences between antibodies leading to a higher antigen capture efficiency. In this paper we investigated the use of a spacer molecule, poly-ethylene glycol (PEG), between the matrix surface and antibodies for the capture of Bacillus globigii, E. coli O157:H7, and ovalbumin. The antigen capture efficiency was determined using a surface ELISA method. Antibodies against the antigens were covalently immobilized either directly or via PEG to glass surfaces using a one-step EDC reaction. The amount of antibody immobilized was determined before blocking the nonspecific binding sites with bovine serum albumin. Antibodies immobilized via a PEG spacer showed a higher capture efficiency compared to direct immobilization, which was more pronounced with large antigens. Antibodies immobilized on glass supports were stable at 65 degrees C for at least 80 min, and the capture efficiency increased with heating at 65 degrees C for 20 min.  相似文献   

16.
Labelling of colloidal gold with protein A. A quantitative study   总被引:6,自引:0,他引:6  
Colloidal gold complexes with protein A are extensively used in immunocytochemistry as secondary reagents for the localization of antigens. However detailed information on the process and extent of adsorption of protein A onto gold particles, the optimal condition of preparation and the stability of such complexes are lacking. The adsorption isotherm of 125I-protein A onto gold particles (11.2 nm in diameter) was studied quantitatively with gold sols buffered at pH 4-7. At low coverage of the particles, the isotherm was independent of pH. However in the presence of a large excess of protein A, the highest coverage was obtained with a gold sol buffered at pH 5.1, the isoelectric point of the protein. The association constant was decreased at high coverage of the particles. Maximum binding of the complex to immobilized IgG occurred with particles labelled with at least 9 molecules of protein A. The complex was stable under storage with up to 12 molecules adsorbed per particle. At high coverage (26 molecules per particle), a progressive loss of protein A was observed. The optimum condition for preparing the complex are reported.  相似文献   

17.
In this work, we have analyzed the structural, topographical, and surface dilatational characteristics of pure beta-lactoglobulin adsorbed films and the effect of the self-assembly of monoglycerides (monopalmitin or monoolein) in beta-lactoglobulin films at the air-water interface. Measurements were performed in a single device that incorporates a Wilhelmy-type film balance, Brewster angle microscopy, and interfacial dilatational rheology. The structural and topographical characteristics of beta-lactoglobulin adsorbed and spread films are similar. However, the surface dilatational modulus of beta-lactoglobulin films shows a complex behavior depending on film formation. The self-assembly of monoglyceride in a beta-lactoglobulin adsorbed film has an effect on the structural, topographical, and dilatational properties of the mixed films, depending on the interfacial composition and the surface pressure (pi). At low pi, a mixed film of monoglyceride and beta-lactoglobulin may exist. At high pi (after the collapse of beta-lactoglobulin), the mixed films are dominated by monoglyceride molecules. However, the small amounts of collapsed beta-lactoglobulin have a significant effect on the surface dilatational properties of the mixed films. Protein displacement by monoglyceride is higher for monopalmitin than for monoolein. However, some degree of interaction exists between proteins and monoglycerides, and these interactions are more evident in adsorbed films than in spread films.  相似文献   

18.
Lu Q  Chen X  Wu Y  Hu S 《Biophysical chemistry》2005,117(1):55-63
Myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP) were incorporated in lecithin (PC) film on glassy carbon (GC) electrode by the method of vesicle-fusion. A pair of well-defined and quasi-reversible cyclic voltammetric peaks was obtained, which reflected the direct electron transfer of heme proteins. UV-Vis and reflectance absorption infrared (RAIR) spectroscopy showed that proteins in PC films remained at their secondary structure similar to their native states. Scanning electron microscopy (SEM) demonstrated the interaction between the proteins and PC would make the morphology of protein-PC films very different from the PC films alone. The immobilized proteins retained their biocatalytic activity to the reduction of NO and hydrogen peroxide, which provide the perspective to be the third generation sensors.  相似文献   

19.
Phospholipid films can be preserved in vitro when adsorbed to a solidifiable hypophase. Suspensions of natural surfactant, lipid extract surfactants, and artificial surfactants were added to a sodium alginate solution and filled into a captive bubble surfactometer (CBS). Surfactant film was formed by adsorption to the bubble of the CBS for functional tests. There were no discernible differences in adsorption, film compressibility or minimal surface tension on quasi-static or dynamic compression for films formed in the presence or absence of alginate in the subphase of the bubble. The hypophase-film complex was solidified by adding calcium ions to the suspension with the alginate. The preparations were stained with osmium tetroxide and uranyl acetate for transmission electron microscopy. The most noteworthy findings are: (1) Surfactants do adsorb to the surface of the bubble and form osmiophilic lining layers. Pure DPPC films could not be visualized. (2) A distinct structure of a particular surfactant film depends on the composition and the concentration of surfactant in the bulk phase, and on whether or not the films are compressed after their formation. The films appear heterogeneous, and frequent vesicular and multi-lamellar film segments are seen associated with the interfacial films. These features are seen already upon film formation by adsorption, but multi-lamellar segments are more frequent after film compression. (3) The rate of film formation, its compressibility, and the minimum surface tension achieved on film compression appear to be related to the film structure formed on adsorption, which in turn is related to the concentration of the surfactant suspension from which the film is formed. The osmiophilic surface associated surfactant material seen is likely important for the surface properties and the mechanical stability of the surfactant film at the air-fluid interface.  相似文献   

20.
Glucose oxidase (GOD), horseradish peroxidase (HRP), and lactate oxidase (LOD) were covalently immobilized on special NH(2)-functionalized glass and on a novel NH(2)-cellulose film via 13 different coupling reagents. The properties of these immobilized enzymes, such as activity, storage stability, and thermostability, are strongly dependent on the coupling reagent. For example, GOD immobilized by cyanuric chloride on the NH(2)-cellulose film loses approximately half of its immobilized activity after 30 days of storage at 4 degrees C or after treatment at 65 degrees C for 30 min. In contrast, GOD immobilized by L-ascorbic acid onto the same NH(2)-cellulose film retains 90% of its initial activity after 1 year of storage at 4 degrees C and 92% after heat treatment at 65 degrees C for 30 min. Unlike GOD, in the case of LOD only immobilization on special NH(2)-functionalized glass, e.g., via cyanuric chloride, led to a stabilization of the enzyme activity in comparison to the native enzyme. The operational stability of immobilized HRP was up to 40 times higher than that of the native enzyme if coupling to the new NH(2)-cellulose film led to an amide or sulfonamide bond. Regarding the kinetics of the immobilized enzymes, the coupling reagent plays a minor role for the enzyme substrate affinity, which is characterized by the apparent Michaelis constant (K(M,app)). The NH(2)-functionalized support material as well as the immobilized density of the protein and/or immobilized activity has a strong influence on the K(M,app) value. In all cases, K(M,app) decreases with increasing immobilized enzyme protein density and particularly drastically for GOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号