首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we cloned two highly related human genes, hChlR1 (DDX11) and hChlR2 (DDX12), which appear to be homologs of the Saccharomyces cerevisiae CHL1 gene. Nucleotide sequence analysis suggests that these genes encode new members of the DEAH family of DNA helicases. While the enzymatic activity of CHL1 has not been characterized, the protein is required for the maintenance of high fidelity chromosome segregation in yeast. Here we report that the hChlR1 protein is a novel human DNA helicase. We have expressed and purified hChlR1 using a baculovirus system and analyzed its enzymatic activity. The recombinant hChlR1 protein possesses both ATPase and DNA helicase activities that are strictly dependent on DNA, divalent cations and ATP. These activities are abolished by a single amino acid substitution in the ATP-binding domain. The hChlR1 protein can unwind both DNA/DNA and RNA/DNA substrates. It has a preference for movement in the 5′→3′ direction on short single-stranded DNA templates. However, unlike other DNA helicases, the hChlR1 DNA helicase can translocate along single-stranded DNA in both directions when substrates have a very long single-stranded DNA region. The enzymatic activities of hChlR1 suggest that DNA helicases are required for maintaining the fidelity of chromosome segregation.  相似文献   

2.
SPP1-encoded replicative DNA helicase gene 40 product (G40P) is an essential product for phage replication. Hexameric G40P, in the presence of AMP-PNP, preferentially binds unstructured single-stranded (ss)DNA in a sequence-independent manner. The efficiency of ssDNA binding, nucleotide hydrolysis and the unwinding activity of G40P are affected in a different manner by different nucleotide cofactors. Nuclease protection studies suggest that G40P protects the 5′ tail of a forked molecule, and the duplex region at the junction against exonuclease attack. G40P does not protect the 3′ tail of a forked molecule from exonuclease attack. By using electron microscopy we confirm that the ssDNA transverses the centre of the hexameric ring. Our results show that hexameric G40P DNA helicase encircles the 5′ tail, interacts with the duplex DNA at the ss–double-stranded DNA junction and excludes the 3′ tail of the forked DNA.  相似文献   

3.
Biochemical analysis of human Dna2   总被引:1,自引:1,他引:0  
Yeast Dna2 helicase/nuclease is essential for DNA replication and assists FEN1 nuclease in processing a subset of Okazaki fragments that have long single-stranded 5′ flaps. It is also involved in the maintenance of telomeres. DNA2 is a gene conserved in eukaryotes, and a putative human ortholog of yeast DNA2 (ScDNA2) has been identified. Little is known about the role of human DNA2 (hDNA2), although complementation experiments have shown that it can function in yeast to replace ScDNA2. We have now characterized the biochemical properties of hDna2. Recombinant hDna2 has single-stranded DNA-dependent ATPase and DNA helicase activity. It also has 5′–3′ nuclease activity with preference for single-stranded 5′ flaps adjacent to a duplex DNA region. The nuclease activity is stimulated by RPA and suppressed by steric hindrance at the 5′ end. Moreover, hDna2 shows strong 3′–5′ nuclease activity. This activity cleaves single-stranded DNA in a fork structure and, like the 5′–3′ activity, is suppressed by steric hindrance at the 3′-end, suggesting that the 3′–5′ nuclease requires a 3′ single-stranded end for activation. These biochemical specificities are very similar to those of the ScDna2 protein, but suggest that the 3′–5′ nuclease activity may be more important than previously thought.  相似文献   

4.
Dna2 is a dual polarity exo/endonuclease, and 5′ to 3′ DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27scFEN1, encoding a 5′ to 3′ exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5′ to 3′ helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27ScFEN1 processes most of the Okazaki fragments, while Dna2 processes only a subset.Key words: yeast, RAD27, RAD9, RAD53, Okazaki fragment processing, DNA replication, exo1  相似文献   

5.
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.  相似文献   

6.
The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5′ → 3′ polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5′ → 3′ polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.  相似文献   

7.
The Cdc24 protein plays an essential role in chromosomal DNA replication in the fission yeast Schizosaccharomyces pombe, most likely via its direct interaction with Dna2, a conserved endonuclease–helicase protein required for Okazaki fragment processing. To gain insights into Cdc24 function, we isolated cold-sensitive chromosomal suppressors of the temperature-sensitive cdc24-M38 allele. One of the complementation groups of such suppressors defined a novel gene, pfh1+, encoding an 805 amino acid nuclear protein highly homologous to the Saccharomyces cerevisiae Pif1p and Rrm3p DNA helicase family proteins. The purified Pfh1 protein displayed single-stranded DNA-dependent ATPase activity as well as 5′ to 3′ DNA helicase activity in vitro. Reverse genetic analysis in S.pombe showed that helicase activity was essential for the function of the Pfh1 protein in vivo. Schizosaccharomyces pombe cells carrying the cold-sensitive pfh1-R20 allele underwent cell cycle arrest in late S/G2-phase of the cell cycle when shifted to the restrictive temperature. This arrest was dependent upon the presence of a functional late S/G2 DNA damage checkpoint, suggesting that Pfh1 is required for the comple tion of DNA replication. Furthermore, at their permissive temperature pfh1-R20 cells were highly sensitive to the DNA-alkylating agent methyl methanesulphonate, implying a further role for Pfh1 in the repair of DNA damage.  相似文献   

8.
Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5′ ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted ‘steric exclusion’ model for dsDNA unwinding, the active 3′ ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5′ passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases.  相似文献   

9.
The 5′-3′ resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5′-3′ DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.  相似文献   

10.
DNA helicases are responsible for unwinding the duplex DNA, a key step in many biological processes. UvrD is a DNA helicase involved in several DNA repair pathways. We report here crystal structures of Deinococcus radiodurans UvrD (drUvrD) in complex with DNA in different nucleotide-free and bound states. These structures provide us with three distinct snapshots of drUvrD in action and for the first time trap a DNA helicase undergoing a large-scale spiral movement around duplexed DNA. Our structural data also improve our understanding of the molecular mechanisms that regulate DNA unwinding by Superfamily 1A (SF1A) helicases. Our biochemical data reveal that drUvrD is a DNA-stimulated ATPase, can translocate along ssDNA in the 3′-5′ direction and shows ATP-dependent 3′-5′, and surprisingly also, 5′-3′ helicase activity. Interestingly, we find that these translocase and helicase activities of drUvrD are modulated by the ssDNA binding protein. Analysis of drUvrD mutants indicate that the conserved β-hairpin structure of drUvrD that functions as a separation pin is critical for both drUvrD’s 3′-5′ and 5′-3′ helicase activities, whereas the GIG motif of drUvrD involved in binding to the DNA duplex is essential for the 5′-3′ helicase activity only. These special features of drUvrD may reflect its involvement in a wide range of DNA repair processes in vivo.  相似文献   

11.
Genetic analysis of the Drosophila Bloom's syndrome helicase homolog (mus309/DmBLM) indicates that DmBLM is required for the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination. Here we report the first biochemical study of DmBLM. Recombinant, epitope-tagged DmBLM was expressed in Drosophila cell culture and highly purified protein was prepared from nuclear extracts. Purified DmBLM exists exclusively as a high molecular weight (~1.17 MDa) species, is a DNA-dependent ATPase, has 3′→5′ DNA helicase activity, prefers forked substrate DNAs and anneals complementary DNAs. High-affinity DNA binding is ATP-dependent and low-affinity ATP-independent interactions contribute to forked substrate DNA binding and drive strand annealing. DmBLM combines DNA strand displacement with DNA strand annealing to catalyze the displacement of one DNA strand while annealing a second complementary DNA strand.  相似文献   

12.
tRNA 3′ processing endoribonuclease (3′ tRNase) is an enzyme responsible for the removal of a 3′ trailer from precursor tRNA (pre-tRNA). We purified ~85 kDa 3′ tRNase from pig liver and determined its partial sequences. BLAST search of them suggested that the enzyme was the product of a candidate human prostate cancer susceptibility gene, ELAC2, the biological function of which was totally unknown. We cloned a human ELAC2 cDNA and expressed the ELAC2 protein in Escherichia coli. The recombinant ELAC2 was able to cleave human pre-tRNAArg efficiently. The 3′ tRNase activity of the yeast ortholog YKR079C was also observed. The C-terminal half of human ELAC2 was able to remove a 3′ trailer from pre-tRNAArg, while the N‐terminal half failed to do so. In the human genome exists a gene, ELAC1, which seems to correspond to the C-terminal half of 3′ tRNase from ELAC2. We showed that human ELAC1 also has 3′-tRNase activity. Furthermore, we examined eight ELAC2 variants that seem to be associated with the occurrence of prostate cancer for 3′-tRNase activity. Seven ELAC2 variants which contain one to three amino acid substitutions showed efficient 3′-tRNase activities, while one truncated variant, which lacked a C-terminal half region, had no activity.  相似文献   

13.
Delta helicase is a 5′ to 3′ DNA helicase that partially co-purifies with DNA polymerase delta (pol delta) from fetal bovine thymus tissue. We describe the resolution of delta helicase from pol delta on heparin–agarose chromatography and its purification to apparent homogeneity by affinity purification on single-stranded DNA–cellulose chromatography, unique-sequence RNA–agarose chromatography, and ceramic hydroxyapatite chromatography. Delta helicase isolated from fetal bovine thymus had an apparent Mr of 115 kDa in SDS–PAGE, and photo-crosslinked to [α-32P]ATP. Tandem mass spectrometry peptide mass data derived from the bovine polypeptide matched to human UPF1 (HUPF1), a 5′ to 3′ RNA and DNA helicase, and a requisite component of the mRNA surveillance complex. Antisera against HUPF1 cross-reacted with delta helicase on western analysis, and delta helicase activity was immunoinactivated by pre-incubation with antibodies to HUPF1, suggesting that delta helicase is the bovine homolog of HUPF1. Immunoprecipitation experiments demonstrated that HUPF1 interacts with the 66-kDa third subunit of pol delta in vivo.  相似文献   

14.
RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg2+-dependent DNA helicase activity with a 3′→5′ polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3′-overhang but is inactive on blunt-ended dsDNA and 5′-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5′-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]''s possible functions in preserving genomic stability.  相似文献   

15.
Small interfering RNAs regulate gene expression in diverse biological processes, including heterochromatin formation and DNA elimination, developmental regulation, and cell differentiation. In the single-celled eukaryote Entamoeba histolytica, we have identified a population of small RNAs of 27 nt size that (i) have 5′-polyphosphate termini, (ii) map antisense to genes, and (iii) associate with an E. histolytica Piwi-related protein. Whole genome microarray expression analysis revealed that essentially all genes to which antisense small RNAs map were not expressed under trophozoite conditions, the parasite stage from which the small RNAs were cloned. However, a number of these genes were expressed in other E. histolytica strains with an inverse correlation between small RNA and gene expression level, suggesting that these small RNAs mediate silencing of the cognate gene. Overall, our results demonstrate that E. histolytica has an abundant 27 nt small RNA population, with features similar to secondary siRNAs from C. elegans, and which appear to regulate gene expression. These data indicate that a silencing pathway mediated by 5′-polyphosphate siRNAs extends to single-celled eukaryotic organisms.  相似文献   

16.
The adeno-associated virus (AAV) nonstructural proteins Rep68 and Rep78 are site-specific DNA binding proteins, ATP-dependent site-specific endonucleases, helicases, and ATPases. These biochemical activities are required for viral DNA replication and control of viral gene expression. In this study, we characterized the biochemical properties of the helicase and ATPase activities of homogeneously pure Rep68. The enzyme exists as a monomer in solution at the concentrations used in this study (<380 nM), as judged by its mobility in sucrose density gradients. Using a primed single-stranded (ss) circular M13 substrate, the helicase activity had an optimum pH of 7 to 7.5, an optimum temperature of 45°C, and an optimal divalent-cation concentration of 5 mM MgCl2. Several nucleoside triphosphates could serve as cofactors for Rep68 helicase activity, and the order of preference was ATP = GTP > CTP = dATP > UTP > dGTP. The Km values for ATP in both the DNA helicase reaction and the site-specific trs endonuclease reaction were essentially the same, approximately 180 μM. Both reactions were sigmoidal with respect to ATP concentration, suggesting that a dimer or higher-order multimer of Rep68 is necessary for both DNA helicase activity and terminal resolution site (trs) nicking activity. Furthermore, when the enzyme itself was titrated in the trs endonuclease and ATPase reactions, both activities were second order with respect to enzyme concentration. This suggests that a dimer of Rep68 is the active form for both the ATPase and nicking activities. In contrast, DNA helicase activity was linear with respect to enzyme concentration. When bound to ssDNA, the enzyme unwound the DNA in the 3′-to-5′ direction. DNA unwinding occurred at a rate of approximately 345 bp per min per monomeric enzyme molecule. The ATP turnover rate was approximately 30 to 50 ATP molecules per min per enzyme molecule. Surprisingly, the presence of DNA was not required for ATPase activity. We estimated that Rep translocates processively for more than 1,300 bases before dissociating from its substrate in the absence of any accessory proteins. DNA helicase activity was not significantly stimulated by substrates that have the structure of a replication fork and contain either a 5′ or 3′ tail. Rep68 binds only to ssDNA, as judged by inhibition of the DNA helicase reaction with ss or double-stranded (ds) DNA. Consistent with this observation, no helicase activity was detected on blunt-ended ds oligonucleotide substrates unless they also contained an ss 3′ tail. However, if a blunt-ended ds oligonucleotide contained the 22-bp Rep binding element sequence, Rep68 was capable of unwinding the substrate. This means that Rep68 can function both as a conventional helicase for strand displacement synthesis and as a terminal-repeat-unwinding protein which catalyzes the conversion of a duplex end to a hairpin primer. Thus, the properties of the Rep DNA helicase activity suggest that Rep is involved in all three of the key steps in AAV DNA replication: terminal resolution, reinitiation, and strand displacement.  相似文献   

17.
18.
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.  相似文献   

19.
20.
WRN helicase expression in Werner syndrome cell lines   总被引:8,自引:1,他引:7  
Mutations in the chromosome 8p WRN gene cause Werner syndrome (WRN), a human autosomal recessive disease that mimics premature aging and is associated with genetic instability and an increased risk of cancer. All of the WRN mutations identified in WRN patients are predicted to truncate the WRN protein with loss of a C-terminal nuclear localization signal. However, many of these truncated proteins would retain WRN helicase and/or nuclease functional domains. We have used a combination of immune blot and immune precipitation assays to quantify WRN protein and its associated 3′→5′ helicase activity in genetically characterized WRN patient cell lines. None of the cell lines from patients harboring four different WRN mutations contained detectable WRN protein or immune-precipitable WRN helicase activity. Cell lines from WRN heterozygous individuals contained reduced amounts of both WRN protein and helicase activity. Quantitative immune blot analyses indicate that both lymphoblastoid cell lines and fibroblasts contain ~6 × 104 WRN molecules/cell. Our results indicate that most WRN mutations result in functionally equivalent null alleles, that WRN heterozygote effects may result from haploinsufficiency and that successful modeling of WRN pathogenesis in the mouse or in other model systems will require the use of WRN mutations that eliminate WRN protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号