首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of gamma interferon (IFN-gamma) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-gamma-deficient (IFN-gamma -/-) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong). While wild-type mice rapidly cleared the infection, IFN-gamma -/- mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity gradually declined in wild-type mice, long-standing cytolytic activity was demonstrated in IFN-gamma -/- mice. The prolonged effector phase in infected IFN-gamma -/- mice was associated with elevated numbers of CD8(+) T cells. Moreover, a higher proportion of these cells retained an activated phenotype and was actively cycling. However, despite the increased CD8(+) T-cell turnover, which might have resulted in depletion of the memory CTL precursor pool, no evidence for exhaustion was observed. In fact, at 3 months postinfection we detected higher numbers of LCMV-specific CTL precursors in IFN-gamma -/- mice than in wild-type mice. These findings indicate that in the absence of IFN-gamma, CTLs cannot clear the infection and are kept permanently activated by the continuous presence of live virus, resulting in a delicate new balance between viral load and immunity. This interpretation of our findings is supported by mathematical modeling describing the effect of eliminating IFN-gamma-mediated antiviral activity on the dynamics between virus replication and CTL activity.  相似文献   

2.
Acute viral infections induce extensive proliferation and differentiation of virus-specific CD8+ T cells. One mechanism reported to regulate the proliferative capacity of activated lymphocytes is mediated by the effect of telomerase in maintaining the length of telomeres in proliferating cells. We examined the regulation of telomerase activity and telomere length in naive CD8+ T cells and in virus-specific CD8+ T cells isolated from mice infected with lymphocytic choriomeningitis virus. These studies reveal that, compared with naive CD8+ T cells, which express little or no telomerase activity, Ag-specific effector and long-lived memory CD8+ T cells express high levels of telomerase activity. Despite the extensive clonal expansion that occurs during acute lymphocytic choriomeningitis virus infection, telomere length is maintained in both effector and memory CD8+ T cells. These results suggest that induction of telomerase activity in Ag-specific effector and memory CD8+ T cells is important for the extensive clonal expansion of both primary and secondary effector cells and for the maintenance and longevity of the memory CD8+ T cell population.  相似文献   

3.
This study demonstrates cell-specific selection of viral variants during persistent lymphocytic choriomeningitis virus infection in its natural host. We have analyzed viral isolates obtained from CD4+ T cells and macrophages of congenitally infected carrier mice and found that three types of variants are present in individual carrier mice: (i) macrophage-tropic, (ii) lymphotropic, and (iii) amphotropic. The majority of the isolates were amphotropic and exhibited enhanced growth in both lymphocytes and macrophages. However, some of the lymphocyte-derived isolates grew well in lymphocytes but poorly in macrophages, and a macrophage-derived isolate replicated well in macrophages but not in lymphocytes. In striking contrast, the original wild-type (wt) Armstrong strain of lymphocytic choriomeningitis virus that was used to initiate the chronic infection and from which the variants are derived grew poorly in both lymphocytes and macrophages. These three types of variants also differed from the parental virus in their ability to establish a chronic infection in immunocompetent hosts. Adult mice infected with the wt Armstrong strain cleared the infection within 2 weeks, whereas adult mice infected with the variants harbored virus for several months. These results suggest that the ability of the variants to persist in adult mice is due to enhanced replication in macrophages and/or lymphocytes. This conclusion is further strengthened by the finding that the variants and the parental wt virus grew equally well in mouse fibroblasts and that the observed growth differences were specific for cells of the immune system.  相似文献   

4.
Acute and chronic demyelination are hallmarks of CNS infection by the neurotropic JHM strain of mouse hepatitis virus. Although infectious virus is cleared by CD8+ T cells, both viral RNA and activated CD8+ T cells remain in the CNS during persistence potentially contributing to pathology. To dissociate immune from virus-mediated determinants initiating and maintaining demyelinating disease, mice were infected with two attenuated viral variants differing in a hypervariable region of the spike protein. Despite similar viral replication and tropism, one infection was marked by extensive demyelination and paralysis, whereas the other resulted in no clinical symptoms and minimal neuropathology. Mononuclear cells from either infected brain exhibited virus specific ex vivo cytolytic activity, which was rapidly lost during viral clearance. As revealed by class I tetramer technology the paralytic variant was superior in inducing specific CD8+ T cells during the acute disease. However, after infectious virus was cleared, twice as many virus-specific IFN-gamma-secreting CD8+ T cells were recovered from the brains of asymptomatic mice compared with mice undergoing demyelination, suggesting that IFN-gamma ameliorates rather than perpetuates JHM strain of mouse hepatitis virus-induced demyelination. The present data thus indicate that in immunocompetent mice, effector CD8+ T cells control infection without mediating either clinical disease or demyelination. In contrast, demyelination correlated with early and sustained infection of the spinal cord. Rapid viral spread, attributed to determinants within the spike protein and possibly perpetuated by suboptimal CD8+ T cell effector function, thus ultimately leads to the process of immune-mediated demyelination.  相似文献   

5.
CD1d1-restricted NK T (NKT) cells rapidly secrete both Th1 and Th2 cytokines upon activation and are therefore thought to play a regulatory role during an immune response. In this study we examined the role of CD1d1 molecules and NKT cells in regulating virus-induced cytokine production. CD1d1-deficient (CD1KO) mice, which lack NKT cells, were infected with lymphocytic choriomeningitis virus, and spontaneous cytokine release from splenocytes was measured. We found that CD1KO mice produce significantly higher amounts of IL-2, IL-4, and IFN-gamma compared with wild-type controls postinfection. Depletion studies of individual lymphocyte subpopulations suggested that CD4+ T cells are required; however, isolation of specific lymphocyte populations indicated that CD4+ T cells alone are not sufficient for the increase in cytokine production in CD1KO mice. Splenocytes from lymphocytic choriomeningitis virus-infected CD1KO mice continued to produce enhanced cytokine levels long after viral clearance and cleared viral RNA faster than wild-type mice. There was no difference in the number of splenocytes between uninfected wild-type and CD1KO mice, whereas the latter knockout mice had an increased number of splenocytes after infection. Collectively, these data provide clear evidence that the expression of CD1d1 molecules controls the magnitude of the cell-mediated immune response to an acute viral infection.  相似文献   

6.
IFN-gamma-deficient (IFN-gamma(-/-)) mice inoculated with intermediate doses of a slowly replicating strain of lymphocytic choriomeningitis virus become chronically infected. In such mice a hypercompensated CTL response is observed that partially controls virus replication. Here we have investigated whether CD4(+) Th cells are required to establish and maintain this new equilibrium. The absence of IFN-gamma does not impair the generation of IL-2-producing CD4(+) cells, and depletion of these cells precipitates severe CD8(+) T cell-mediated immunopathology in IFN-gamma(-/-) mice, indicating an important role of CD4(+) T cells in preventing this syndrome. Analysis of organ virus levels revealed a further impairment of virus control in IFN-gamma(-/-) mice following CD4(+) cell depletion. Initially the antiviral CTL response did not require CD4(+) cells, but with time an impaired reactivity toward especially the glycoprotein 33--41 epitope was noted. Enumeration of epitope-specific (glycoprotein 33--41 and nucleoprotein 396--404) CD8(+) T cells by use of tetramers gave similar results. Finally, limiting dilution analysis of CTL precursors reveal an impaired capacity to sustain this population in CD4(+)-depleted mice, especially in mice also deficient in IFN-gamma. Thus, our findings disclose that T cell help is required to sustain the expanded CTL precursor pool required in IFN-gamma(-/-) mice. This interpretation is supported by mathematical modeling that predicts an increased requirement for help in IFN-gamma(-/-) hosts similar to what is found with fast replicating virus strains in normal hosts. Thus, the functional integrity of CD8(+) effector T cells is one important factor influencing the requirement for T cell help during viral infection.  相似文献   

7.
The impact of prophylactic vaccination against acute and chronic infection in a Th-deficient host has not been adequately addressed because of difficulties in generating protective immunity in the absence of CD4(+) T cell help. In this study, we demonstrated that a broad CD8(+) T cell immune response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice, irrespective of the nature of the vaccine. These results indicated that optimized vaccination may lead to efficient protection against acute viral infection, even in Th-deficient individuals, but that the duration of such immunity is limited. Nevertheless, for select immunodeficiencies in which CD4(+) T cell deficiency is incomplete or transient, these results are very encouraging.  相似文献   

8.
Ablation of CD8 and CD4 T cell responses by high viral loads   总被引:19,自引:0,他引:19  
To evaluate the impact of sustained viral loads on anti-viral T cell responses we compared responses that cleared acute lymphocytic choriomeningitis virus infection with those that were elicited but could not resolve chronic infection. During acute infection, as replicating virus was cleared, CD8 T cell responses were down-regulated, and a pool of resting memory cells developed. In chronically infected hosts, the failure to control the infection was associated with pronounced and prolonged activation of virus-specific CD8 T cells. Nevertheless, there was a progressive diminution of their effector activities as their capacity to produce first IL-2, then TNF-alpha, and finally IFN-gamma was lost. Chronic lymphocytic choriomeningitis virus infection was also associated with differential contraction of certain CD8 T cell responses, resulting in altered immunodominance. However, this altered immunodominance was not due to selective expansion of T cells expressing particular TCR Vbeta segments during chronic infection. High viral loads were not only associated with the ablation of CD8 T cell responses, but also with impaired production of IL-2 by virus-specific CD4 T cells. Taken together, our data show that sustained exposure to high viral loads results in the progressive functional inactivation of virus-specific T cell responses, which may further promote virus persistence.  相似文献   

9.
Professional APCs of hemopoietic-origin prime pathogen-specific naive CD8 T cells. The primed CD8 T cells can encounter Ag on infected nonhemopoietic cell types. Whether these nonhemopoietic interactions perpetuate effector T cell expansion remains unknown. We addressed this question in vivo, using four viral and bacterial pathogens, by comparing expansion of effector CD8 T cells in bone marrow chimeric mice expressing restricting MHC on all cell types vs mice that specifically lack restricting MHC on nonhemopoietic cell types or radiation-sensitive hemopoietic cell types. Absence of Ag presentation by nonhemopoietic cell types allowed priming of naive CD8 T cells in all four infection models tested, but diminished their sustained expansion by approximately 10-fold during lymphocytic choriomeningitis virus and by < or =2-fold during vaccinia virus, vesicular stomatitis virus, or Listeria monocytogenes infections. Absence of Ag presentation by a majority (>99%) of hemopoietic cells surprisingly also allowed initial priming of naive CD8 T cells in all the four infection models, albeit with delayed kinetics, but the sustained expansion of these primed CD8 T cells was markedly evident only during lymphocytic choriomeningitis virus, but not during vaccinia virus, vesicular stomatitis virus, or L. monocytogenes. Thus, infected nonhemopoietic cells can amplify effector CD8 T cell expansion during infection, but the extent to which they can amplify is determined by the pathogen. Further understanding of mechanisms by which pathogens differentially affect the ability of nonhemopoietic cell types to contribute to T cell expansion, how these processes alter during acute vs chronic phase of infections, and how these processes influence the quality and quantity of memory cells will have implications for rational vaccine design.  相似文献   

10.
CTL escape mutations have been identified in several chronic infections, including mice infected with mouse hepatitis virus strain JHM. One outstanding question in understanding CTL escape is whether a CD8 T cell response to two or more immunodominant CTL epitopes would prevent CTL escape. Although CTL escape at multiple epitopes seems intuitively unlikely, CTL escape at multiple CD8 T cell epitopes has been documented in some chronically infected individual animals. To resolve this apparent contradiction, we engineered a recombinant variant of JHM that expressed the well-characterized gp33 epitope of lymphocytic choriomeningitis virus, an epitope with high functional avidity. The results show that the presence of a host response to this second epitope protected mice against CTL escape at the immunodominant JHM-specific CD8 T cell epitope, the persistence of infectious virus, and the development of clinical disease.  相似文献   

11.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

12.
13.
IFN-gamma is the primary mediator of anti-parasite effector mechanisms against Toxoplasma gondii. After intraperitoneal infection with the Fukaya strain of T. gondii, unirradiated IFN-gamma knock-out (GKO) mice transferred with wild type (WT) CD8+ effector T cells from infected mice failed to induce the production of IFN-gamma and died, whereas irradiated (IR) GKO mice transferred with WT CD8+ T cells induced IFN-y production and survived more than 6 months. IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells died 8 days after infection, whereas those transferred with WT CD8+ T cells together with B-la or T cells survived. B-2 cells of infected GKO mice activated CD11b+ cells for IL-4 production, and down-regulated NO release, STAT1 phosphorylation, and interferon regulatory factor-1 expression in the peritoneal exudates cells of IR GKO mice transferred with WT CD8+ T cells together with GKO B-2 cells after infection. Thus, B-2 cells in T. gondii-infected mice act as suppressor cells in the host defense of infected mice.  相似文献   

14.
We measured CD8 T cell clonotypic diversity to three epitopes recognized in C57BL/6 mice infected with mouse hepatitis virus, strain JHM, or lymphocytic choriomeningitis virus. We isolated epitope-specific T cells with an IFN-gamma capture assay or MHC class I/peptide tetramers and identified different clonotypes by Vbeta chain sequence analysis. In agreement with our previous results, the number of different clonotypes responding to all three epitopes fit a log-series distribution. From these distributions, we estimated that >1000 different clonotypes responded to each immunodominant CD8 T cell epitope; the response to a subdominant CD8 T cell epitope was modestly less diverse. These results suggest that T cell response diversity is greater by 1-2 orders of magnitude than predicted previously.  相似文献   

15.
Natural killer T (NKT) cells, a unique subpopulation of T cells, coexpress markers also present on NK cells and recognize the major histocompatibility complex class I-like CD1d1 molecule. We studied the effect of an acute virus infection on NKT cells. Mice were infected with the nonhepatotropic Armstrong strain of lymphocytic choriomeningitis virus (LCMV), and at various times postinfection, mononuclear cells from the liver, peritoneum, and spleen were isolated. It was found that within 2 to 3 days, there was a selective loss of NKT cells from the liver with an apparent rapid recovery within 8 to 14 days. There was no increase in peritoneal or splenic NKT cells, indicating that NKT cells did not traffic to these tissues. This loss of NKT cells was independent of gamma interferon (IFN-gamma) and interleukin 12 (IL-12) production, but did occur in mice treated with poly(I-C), a classical inducer of IFN-alpha/beta. The reduction in NKT cells was CD28 and fas/fasL independent and occurred via apoptosis. It was not observed in LCMV-infected DNA fragmentation factor 45-deficient mice, and an increase in active caspase 3-specific staining was found in liver NKT cells from LCMV-infected and poly(I-C)-treated mice compared to uninfected wild-type mice. Interestingly, it was also found that liver NKT cells from LCMV-infected mice were themselves infected. These results suggest that the loss of NKT cells following an acute LCMV infection could be due to the induction of IFN-alpha/beta resulting in NKT-cell apoptosis and is important for the host's immune response to LCMV.  相似文献   

16.
A phenotypic and functional analysis has been made of the cellular response in regional lymphoid tissue of C57BL/6J mice infected with lymphocytic choriomeningitis virus. Massive recruitment of nondividing cells occurred from 3 days after infection, with total numbers of CD8+ T lymphocytes, B220+ B cells, and Thy-1- B220- null cells being high from day 4 to day 6. In contrast, the peak counts for CD4+ T cells were recorded on day 4 and declined dramatically thereafter. Enhanced expression of IL-2R and Ly-24, both of which can be regarded as T cell activation markers, was found for both the CD4+ and the CD8+ subsets, being most prominent for the CD8+ T cells on day 6. Evidence of T cell proliferation was not recognized until days 5 and 6, coincident with enhanced responsiveness of the lymphocytes to rIL-2 and the development of virus-specific cytotoxic activity. Elimination of the CD4+ T cells by treatment of mice with mAb did not modify either the pathogenesis of lymphocytic choriomeningitis, or the expression of activation markers on the CD8+ T cells which are known to be the key effectors in this disease. Thus, the pattern of responsiveness for the CD8+ population is of recruitment to the lymph node, progressive increase in the expression of activation markers and enhanced sensitivity to rIL-2, with late proliferation and generation of cytotoxic activity. This model provides a system for the rigorous in vivo analysis of parameters influencing lymphocyte differentiation and activation in a virus infection.  相似文献   

17.
The activities of cytokines were determined in cerebrospinal fluid (CSF) and serum of mice persistently or intracerebrally acutely infected with lymphocytic choriomeningitis (LCM) virus (LCMV). In contrast to CBA/J (LCMV carrier) mice that responded with low levels of LCMV-specific antibody, high-responder NMRI (carrier) mice showed antibody production by B cells outside of lymphoid organs. The B cells that had infiltrated the brains of LCMV carrier mice exhibited no preferential immunoglobulin isotype or subtype virus-specific antibody production. Phenotypic analysis of the brain infiltrates in virus carrier mice revealed dominance of CD4+ T cells in contrast to virtual absence of CD4+ and dominance of CD8+ in mice with acute LCM. In NMRI but not in CBA/J carrier mice, significant concentrations of interleukin-6 (IL-6) were detected in CSF and serum; IL-2, IL-4, IL-5, granulocyte-macrophage CSF (GM-CSF), and gamma interferon (IFN-gamma) were not elevated. In contrast, during acute, lethal LCM, IL-6 and IFN-gamma were found at high concentrations, and IL-4, IL-5, and GM-CSF were detectable in CSF and serum, but virus-specific antibody-producing cells were not (yet) detectable in the brain. Thus, distinct cytokine patterns are found in acute versus chronic LCMV infection of the brain: in LCM carrier mice, local random-class immunoglobulin production correlated with the absence of IL-2, IL-4, IL-5, and IFN-gamma but active secretion of IL-6.  相似文献   

18.
Viral infections in human infants frequently follow a protracted course, with higher viral loads and delayed viral clearance compared to viral infections in older children. To identify the mechanisms responsible for this protracted pattern of infection, we developed an infant infection murine model using the well-characterized lymphocytic choriomeningitis virus (LCMV) WE strain in 2-week-old BALB/c mice. In contrast to adult mice, in which viral clearance occurred as expected 8 days after infection, LCMV titers persisted for several weeks after infection of infant mice. LCMV-specific effector CD8(+) T cells were elicited in infant mice and fully functional on day 7 but rapidly waned and could not be recovered from day 12 onwards. We show here that this results from the failure of LCMV-specific CD8(+) T cells to expand and the absence of protective LCMV-specific memory CD8(+) T cells. Under these early life conditions, viral control and clearance are eventually achieved only through LCMV-specific B cells that contribute to protect infant mice from early death or chronic infection.  相似文献   

19.
Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.  相似文献   

20.
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号