首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary Solid animal fats aggregated when first added to aqueous media and strong agitation was necessary to accomplish and maintain their dispersion. The growth rate of Saccharomycopsis lipolytica accelerated as fat dispersion proceeded until similar rates of exponential growth were attained with either lard, mutton tallow or beef tallow as sole carbon source. The major fatty acids in all substances were oleic, palmitic, and stearic. A major proportion of both saturated acids were consumed during the yeast's growth on animal fats, but the growth rates were greatly reduced after exhaustion of the preferentially consumed unsaturated acid. At this time, substantial amounts of saturated acids, present both as free fatty acid and in glycerides, remained. The amounts of these residual acids were markedly affected by the distribution of acyl groups within the original triglycerides. With individual fatty acids as the sole carbon source, the yeast grew at comparable rates on palmitic and oleic acids but did not grow on stearic acid.  相似文献   

2.
Summary High concentration production of an extracellular enzyme, lipase, was achieved by a fed-batch culture of Pseudomonas fluorescens. During the cultivation, temperature, pH and dissolved oxygen concentration wwre maintained at 23°C, 6.5 and 2–5 ppm, respectively. Olive oil was used as a carbon source for microbial growth. To produce lipase effectively the specific feed rate of olive oil had to be maintained in a range of 0.04–0.06 (g oil) · (g dry cell)-1 · h-1. The CO2 evolution rate was monitored to estimate the requirement of olive oil. The ratio of feed rate of olive oil to the CO2 evolution rate was varied in the range of 20–60 g oil/mol CO2. The higher value of the ratio accelerated microbial growth, but did not favour lipase production. Once the high cell concentration of 60 g/l had been achieved, the ratio was changed from 50 to 30 g oil/mol CO2 to accelerate the lipase production. By this CO2-dependent method a very high activity of lipase, 1980 units/ml, was obtained. Both the productivity and yield of lipase were prominently increased compared with a conventional batch culture.  相似文献   

3.
High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8–9 and 25–40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200–4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH.  相似文献   

4.
Summary An automatic feeding system to supply olive oil in semi-batch culture was established by monitoring cell concentration with a laser turbidimeter combined with a microcomputer and a pulse motor. In this automatic feeding system, specific olive oil supply rate (g olive oil) · (g dry cell)-1 · h-1, q 0, was changed in an appropriate range. Attempts were made to produce lipase by a turbidity-dependent automatic fed-batch culture of Pseudomonas fluorescens. It was found from the semi-batch cultures with turbidity-dependent feeding of olive oil and with varied initial Fe ion concentrations that excess Fe ion was inhibitory to formation of the lipase. Turbidity-dependent automatic simultaneous feeding of olive oil and Fe ion was performed to obtain semi-deficiencies of both the oily substrate in the culture liquid and Fe content of the cells. Using this semi-batch culture, high lipase activity, 5600 units/ml, was attained at an optimal value of q 0.  相似文献   

5.
Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC–FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.  相似文献   

6.
Lipid storage compounds in marine bacteria   总被引:15,自引:0,他引:15  
Forty psychrophile or psychrotrophic crude-oil-utilizing marine bacteria were investigated for their ability to accumulate lipid storage compounds in the cytoplasm during cultivation under nitrogen-limiting conditions. Most of them (73%) were able to accumulate specialized lipids like polyhydroxyalkanoic acids (PHA) while other lipids such as wax esters occurred in two isolates. Accumulation of PHA occurred predominantly at low temperatures (4–20 °C) as demonstrated for three isolates. Electron microscopy revealed polyphosphate inclusions occurring in two isolates in addition to PHA. Cells of the isolate Acinetobacter sp. 211 were able to synthesize and accumulate lipid inclusions during growth on acetate, ethanol, olive oil, hexadecanol and heptadecane. The composition of the lipid inclusions depended on the compounds provided as carbon source. Wax esters and acylglycerols occurred mainly during the cultivation on olive oil; in contrast, wax esters and free alcohols occurred during cultivation on hexadecanol. Total fatty acids in cells of the Acinetobacter sp. 211 amounted to 25% of the cellular dry weight in olive-oil-grown cells. Palmitic acid was the main fatty acid in the lipids when the cells were cultivated on acetate or ethanol (44% and 32% of total fatty acids respectively). In contrast, fatty acids occurring in the lipids during cultivation on hexadecanol, heptadecane or olive oil were related to the carbon source. The fatty acids present in the accumulated lipids consisted predominantly of saturated and unsaturated straight-chain fatty acids with a chain length ranging from 12 to 18 carbon atoms. Analysis of the lipid-granule-associated proteins in cells of Acinetobacter sp. 211 revealed a protein of 39 kDa as the predominant protein species. Received: 2 July 1996 / Received revision: 3 September 1996 / Accepted: 28 September 1996  相似文献   

7.
Malassezia is a facultative or obligatory lipophilic yeast. We devised new lipid-supplemented media suitable for the culture ofMalassezia. Malassezia furfur andM. pachydermatis grew well on both solid and liquid media supplemented with creaming powder preparations which are commercially available at moderate prices. Striking differences were found between the cellular fatty acid compositions ofM. furfur grown on media supplemented with creaming powder and that grown on media with conventional olive oil.Malassezia furfur grown on media with olive oil had nearly the same fatty acid composition as olive oil, with C18:1 amounting to 80%, while that grown on media supplemented with creaming powder had C16, C18:1 and C18:2 as the principal components. The use of these supplementary lipids appeared not to inhibit the normal synthesis of fatty acid inM. furfur. For the culture ofM. pachydermatis, media supplemented with creaming powder were also found more suitable than lipid-free media. The media devised are considered excellent, because they appear to provide a more natural growth environment forMalassezia.  相似文献   

8.
Bacteria which grew in a medium containing olive oil as a sole source of carbon were isolated from two meat plants in the Sendai district of Japan. All of the isolates tested assimilated beef tallow, lard, olive oil and used salad oil as a sole carbon source in shaking cultures. One of the isolates, strain 351, digested lipids most efficiently, as shown by the amount of n-hexane extracts that remained. This bacterium was identified as Bacillus sp. A new and efficient laboratory-scale apparatus for the biological treatment of lipid-containing wastewater was devised using strain 351. The apparatus consisted of a water circulation system for the primary treatment of the water, in which strain 351 was inoculated, and an ordinary aeration tank using activated sludge as a secondary treatment. Lipids in the wastewater could be almost completely removed by this apparatus without physical treatment. On the other hand, an ordinary aeration system in the laboratory using an air stone and air pump resulted in the floating of lipids, and was not successful in digesting lipids even in the presence of strain 351.  相似文献   

9.
The incorporation of Tweens (1 %, 2 %, 5 %) or olive oil (1 %, 2 %) in soil or in soil-containing substrate strongly stimulated mycelial growth of the edible ectomycorrhizal mushroom Tricholoma matsutake (Matsutake) after 1 or 3 months, respectively. The growth responses to Tween 40 and Tween 80 were dose-dependent. Fungal biomass increased up to 15-fold as a result of olive oil incorporation. After 4 months of Matsutake/pine co-culture in the presence of olive oil (2 %), compact aggregates of substrate, hyphae, and surface-colonized roots were observed, recalling in some ways the mycelial mat structure of Matsutake in the field, i.e. Shiro. Olive oil did not prevent formation of well-developed Hartig net palmettis although those seemed rather less abundant than without oil addition. The incorporation of Tween 80 or olive oil (2 %) into nutrient agar induced the proliferation of peripheral hydrophilic-like hyphae penetrating the medium. Tricholoma matsutake growth stimulation, possibly related to the presence of fatty acids in surfactants and oil, could be a consequence of the higher hydrophilicity of treated hyphae, or of enhanced lytic enzyme excretion and activity. Parameters such as adjuvant type, concentration, and growth conditions will be further optimised to formulate culture substrates adapted to the co-culture of T. matsutake and its host plants.  相似文献   

10.
Summary Ligninase activity of Phanerochaete chrysosporium INA-12 was increased when vegetable oils emulsified with sorbitan polyoxyethylene monooleate (Tween 80) were added to growth medium. Maximal enzyme yield was 22.0 nkat·ml-1 in olive oil cultures after 4 days incubation. P. chrysosporium INA-12 was also able to utilize tall oil fatty acids for ligninase synthesis. An extracellular lipase activity was detected during the primary phase of growth in culture containing vegetable oils. On the other hand, ligninase production was 1.5-fold enhanced when olive oil cultures were supplemented with soybean asolectin as a phospholipid source. In cultures supplied with olive oil plus asolectin, P. chrysosporium INA-12 mycelium exhibited a preferential enrichment of oleic acid (C18:1), phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) as compared to lipid-free medium. PC and LPC enrichment was associated with an increased ratio of saturated versus unsaturated fatty acids of phospholipids.  相似文献   

11.
The enhancing effect of various concentrations of 18 oils and a silicon antifoam agent on erythromycin production by Saccharopolyspora erythraea was evaluated in a complex medium containing soybean flour and dextrin as the main substrates. The oils used consisted of sunflower, pistachio, cottonseed, melon seed, water melon seed, lard, corn, olive, soybean, hazelnut, rapeseed, sesame, shark, safflower, coconut, walnut, black cherry kernel and grape seed oils. The biomass, erythromycin, dextrin and oil concentrations and the pH value were measured. Also, the kinds and frequencies of fatty acids in the oils were determined. The productivity of erythromycin in the oil-containing media was higher than that of the control medium. However, oil was not suitable as a main carbon source for erythromycin production by S. erythraea. The highest titer of erythromycin was produced in medium containing 55 g/l black cherry kernel oil (4.5 g/l). The titers of erythromycin in the other media were also recorded, with this result: black cherry kernel > water melon seed > melon seed > walnut > rapeseed > soybean > (corn = sesame) > (olive = pistachio = lard = sunflower) > (hazelnut = cotton seed) > grape seed > (shark = safflower = coconut). In media containing various oils, the hyphae of S. erythraea were longer and remained in a vegetative form after 8 days, while in the control medium, spores were formed and hyphae were lysed.  相似文献   

12.
Adding olive oil to an insect cell (Spodoptera frugiperda) cultivation with a TNM-FH medium enhanced cell growth. In the static cultivation, growth with 0.5% oil increased viable cell density by 32%, while cultivation in spinner flasks agitated at 260 rpm increased by 64%. With a gradual increase of agitation from 60 rpm to 500 rpm, the viable cell density was 81% higher than that without the olive oil supplement.  相似文献   

13.
Lipase location in Yarrowia lipolytica cells   总被引:1,自引:0,他引:1  
Lipase production by Yarrowia lipolytica was growth associated and, at the beginning of cultivation, it was mainly cell-bound. Lipase release into the culture medium started when about 50% of the carbon source (olive oil or glucose) was consumed reaching its maximum concentration in the late stationary phase.  相似文献   

14.
Scenedesmus obliquus can help to reduce the environmental impact of industrial olive mill wastewater from olive oil extraction in the three‐phase system. This work examines the effect of temperature changes (288–308 K) on algal growth, culture medium, and biochemical composition of S. obliquus. The maximum specific growth rate of 0.024 h?1 occurred at an optimal temperature of 302.7 K. The apparent activation energies of cell growth and cell death were determined as 61.8 and 142.8 kJ/mol, respectively. At the end of culture the percentages of pigments, proteins, and carbohydrates were greater at the two ends of the temperature range studied, as it was also observed for the maximum elimination of biochemical oxygen demand (BOD5). The mono‐ and polyunsaturated fatty acid content of the biomass was greater at the lowest temperature used (288 K).  相似文献   

15.
A novel Acinetobacter strain, Ud-4, possessing a strong capacity to degrade edible, lubricating, and heavy oil was isolated from seawater in a fishing port located in Toyama, Japan. It was identified by morphological and physiological analyses and 16S rDNA sequencing. This strain could utilize five types of edible oils (canola oil, olive oil, sesame oil, soybean oil, and lard), lubricating oil, and C-heavy oil as the sole carbon source for growth in M9 medium. The strain grew well and heavily degraded edible oils in Luria–Bertani medium during a 7-day culture at 25°C; it also degraded all kinds of oils in artificial seawater medium for marine bacteria. Furthermore, this strain was capable of degrading almost all C10–C25 n-alkanes in C-heavy oil during a 4-week culture. Oligonucleotide primers specific to two catabolic genes involved in the degradation of n-alkanes (Acinetobacter sp. alkM) and triglyceride (Acinetobacter sp. lipA) allowed amplification of these genes in strain Ud-4. To our knowledge, this is the first report on the isolation of a bacterium that can efficiently degrade both edible and mineral oils.  相似文献   

16.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

17.
Juvenile soft-shelled turtles (Pelodiscus sinensis) were fed 7 diets containing 8% of lard, soybean oil, olive oil, menhaden fish oil, or mixtures of 1 to 1 ratio of fish oil and lard, soybean oil, olive oil for 10 weeks. Growth and muscle proximate compositions of the turtles were not affected by different dietary treatments (p>0.05). Fatty acid profiles in muscle polar lipids, muscle non-polar lipids, and liver polar lipids reflected the fatty acid composition of dietary lipid source. Turtles fed diets containing fish oil generally contained significantly higher (p<0.05) proportion of highly unsaturated fatty acids (HUFA) in both polar and non-polar lipids of muscle and polar fraction of liver lipids than those fed other oils. Non-polar fraction of liver lipids from all groups of turtles contained less than 1% of HUFA. All turtles contained relatively high proportions of oleic acid in their lipids regardless of the dietary lipid source. Further, lipid peroxidation in both muscle tissue and liver microsomes of turtles fed fish oil as the sole lipid source was greater (p<0.05) than those fed fish oil-free diets. Turtles fed olive oil as the sole lipid source had the lowest lipid peroxidation rate among all dietary groups. The results indicate that dietary n-3 HUFA may not be crucial for optimal growth of soft-shelled turtles although they may be used for metabolic purpose. Further, high level of dietary HUFA not only increases the HUFA content in turtle tissues, but also enhances the susceptibility of these tissues to lipid peroxidation.  相似文献   

18.
The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20–35 °C, pH 3–9, and 1,000–5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5?±?10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3?±?8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH3. The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.  相似文献   

19.
Summary Batch cultures of Saccharomycopsis lipolytica were grown in minimal medium with olive oil as carbon source. Inocula of glucose-grown cells commenced growth with little lag at rates largely unaffected by variations in the stirring rate or oil concentration. However, growth rates declined when the medium pH was below 7.0. In all cultures, media pH declined with increasing cell concentration. Cell composition during exponential growth was 42% protein and 2% fat. Carbon-limited cells maintained this composition after oil exhaustion but during nitrogen- and oxygen-limited growth, protein content decreased and fat content increased although the protein decrease was only transient with oxygen limitation. Yield coefficients for triglyceride were near unity for all cultures. Free acid concentrations rose rapidly after inoculation. As fermentations progressed, free glycerol appeared and concentrations of di- and monoglycerides passed through maximal values although peak concentrations of di- and monoglycerides persisted for extended times in oxygen- and nitrogen-limited cultures respectively. The fraction of free glycerol consumed was greater in oxygen-limited than in carbon- or nitrogen-limited culture. The basic requirements for growth of yeasts on fatty wastes are discussed with reference to these observations.  相似文献   

20.
The biological remediation of olive oil mill wastes has been attempted several times in the past through the use of different types of microbes. Among them, a relatively large array of fungi were studied for neutralizing the heavy pollutant effects and/or for converting these wastes into new value-added products. The present investigation was aiming at examining whether olive oil mill wastes could be exploited for the cultivation of mushrooms of the genus Pleurotus. At a preliminary stage, two Pleurotus species, i.e. P. eryngii and P. pulmonarius, were tested for their ability to colonize an olive press-cake (OPC) substrate supplemented with various dilutions of raw olive mill wastewater (OWW). Some important cultural characters related to mushroom production (earliness, yield, biological efficiencies and quality of basidiomata) were estimated. The outcome revealed different cultural responses for each Pleurotus species examined; the P. pulmonarius strain showed better earliness values and P. eryngii, although it was a slow growing fungus, produced basidiomata in high yields and of a very good quality. On the other hand, the OPC substrate supplemented with low concentrations of OWW (12.5% v/w) behaved satisfactorily as regards the fungal colonization rates and mushroom yield, but when the addition of higher rates of raw, untreated OWW (75–100% v/w) was attempted then the Pleurotus strains were completely unable to grow. The optimal concentration of OWW for Pleurotus mycelial growth was assessed through measurements of the biomass produced in liquid nutrient media and was found to lie within the 25–50% range, depending on the Pleurotus species and on the properties of the substrates examined. Furthermore, the phytotoxic effects that the spent liquid medium possessed were examined in comparison with the phytotoxicity of the raw liquid waste. The prospects of exploiting olive oil mills wastes for mushroom cultivation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号