首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Activation of calcium oscillations by thapsigargin in parotid acinar cells.   总被引:7,自引:0,他引:7  
The tumor promoter thapsigargin releases Ca2+ from intracellular stores by specific inhibition of microsomal Ca-ATPase activity without inositol phosphate formation. Recent studies of the actions of thapsigargin support the concept that the level of Ca2+ within the inositol (1,4,5)-trisphosphate (IP3)-sensitive intracellular pool regulates the Ca2+ permeability of the plasma membrane. We examined the effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) in single rat parotid cells using digital fluorescence microscopy. In the absence of extracellular Ca2+ (Ca2+o), thapsigargin transiently increased [Ca2+]i. Following the thapsigargin-induced [Ca2+]i transient, carbachol in the continued absence of Ca2+o was unable to raise [Ca2+]i, indicating that thapsigargin mobilizes Ca2+ from the IP3-sensitive store. In the converse experiment, carbachol prevented a rise of [Ca2+]i by thapsigargin, suggesting that the IP3- and thapsigargin-sensitive Ca2+ pools are the same. Depletion of Ca2+ from the IP3-sensitive pool by thapsigargin enhanced plasma membrane Ca2+ permeability. Thapsigargin triggered sustained Ca2+ oscillations in Ca2(+)-containing medium which are highly reminiscent of agonist-induced oscillations in these cells. Carbachol addition rapidly raised IP3 levels during oscillations triggered by thapsigargin but did not elevate [Ca2+]i, indicating that the IP3-sensitive pool remains continuously depleted during [Ca2+]i fluctuations. The results from this study rule out the involvement of the IP3-sensitive pool in the mechanisms involved in thapsigargin-induced (and by analogy, agonist-induced) oscillations in parotid cells.  相似文献   

2.
This study examines the activation of divalent cation entry into rat parotid gland acinar cells by using Mn2+ as a Ca2+ surrogate cation. Following muscarinic-cholinergic stimulation of dispersed parotid acini with carbachol (10 microM), the onset of internal Ca2+ release (cytosolic [Ca2+], [Ca2+]i, increase) and the stimulation of Mn2+ entry (increase in fura2 quenching) are not simultaneously detected. [Ca2+]i elevation, due to intracellular release, is detected almost immediately following carbachol addition and peak [Ca2+]i increase occurs at 6.0 +/- 0.8 sec. However, there is an interval (apparent lag) between carbachol addition and the detection of stimulated Mn2+ entry. This apparent lag is decreased from 26 +/- 3.1 sec to 9.2 +/- 1.5 sec when external Mn2+ ([Mn2+]0) is increased from 12.5 to 500 microM. It is not decreased further with increase in [Mn2+]0 from 500 microM to 1 mM (9.8 +/- 2.1 sec), although both intracellular free Mn2+ and [Mn2+-fura2]/[fura2] increase. Thus, at [Mn2+]0 < 500 microM, the observed lag time is partially due to a limitation in the magnitude of Mn2+ entry. Furthermore, neither peak [Ca2+]i nor the time required to reach peak [Ca2+]i is significantly altered by [Mn2+]0 (12.5 microM to 1 mM). At every [Mn2+]0 tested (i.e., 12.5 microM-1 mM), the apparent lag is significantly greater than the time required to reach peak [Ca2+]i. However, when carbachol stimulation of the [Ca2+]i increase is attenuated by loading the acini with the Ca2+ chelator, 2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), there is no detectable lag in carbachol stimulation of Mn2+ entry (with 1 mM [Mn2+]0). Importantly, in BAPTA-loaded acini, carbachol stimulates Mn2+ entry via depletion of the internal Ca2+ pool and not via direct activation of other divalent cation entry mechanisms. Based on these results, we suggest that the apparent lag in the detection of carbachol stimulation of Mn2+ entry into parotid acinar cells is due to a retardation of Mn2+ entry by the initial increase in [Ca2+]i, due to internal release, which most likely occurs proximate to the site of divalent cation entry.  相似文献   

3.
The alteration in the concentration of cytosolic free calcium ([Ca2+]i) in isolated rat parotid cells caused by autonomic agents was directly measured using the Ca-sensitive fluorescent probe, quin2. [Ca2+]i of unstimulated cells was estimated to be 162.7 +/- 3.2 nM in normal medium. Carbachol (CCh) and isoproterenol (ISP) caused a rapid rise in [Ca2+]i in a dose-dependent manner. Maximum increases in [Ca2+]i induced by CCh and ISP were approximately 100% and 25% of resting level, respectively. In Ca-free medium, CCh produced a small, rapid rise in [Ca2+]i, followed by a slow decay and a return to resting level within 3-4 min, while all doses of ISP tested failed to change [Ca2+]i. These results suggest that CCh mobilizes Ca2+ from both extracellular and intracellular pools and then results in a rise in [Ca2+]i, whereas ISP may slightly mobilize only the extracellular Ca pool.  相似文献   

4.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

5.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

6.
High speed laser confocal microscopy (8 ms/image) was applied to the dissociated parotid acini as a model to study Ca2+ signaling mechanisms in non-excitable exocrine secretory cells. Immunofluorescence microscopy showed the localization of IP3 receptor type 2 along the apical membrane region. Muscarinic stimulation with carbachol evoked a rise in [Ca2+]i that was initiated from apical region and propagated into basal region as Ca2+ waves. This was most clearly observed when extracellular Ca2+ was omitted. Carbachol also triggered the abrupt increase of [Ca2+]i simultaneously at both basal and apical regions in many acini. Within an acinus, each cell responded synchronously. The present results suggest that one Ca2+ initiation site in the rat parotid acinar cell is apical region, corresponding to the localization of IP3 receptors. Another Ca2+ initiation site is basal region, which seems to be related to Ca2+ entry from extracellular medium and/or Ca2+ release from basally located organelles such as nuclei and endoplasmic reticulum.  相似文献   

7.
A peripheral nervous system cell line RT4-B, established by Imada and Sueoka (Dev. Biol., 66:97-108, 1978), was shown to respond to serotonin [5-hydroxytryptamine (5-HT)] and catecholamines. 5-HT induced a small and transient increase in cytosolic free Ca2+ concentration ([Ca2+]i) in the RT4-B cells. The increase was effectively blocked by 5-HT2 receptor antagonists (spiperone, ritanserin and mianserin), but not by a 5-HT3 receptor antagonist (MDL72222), or a alpha 1-adrenergic receptor antagonist (prazosin), indicating that RT4-B cells express 5-HT2 receptors. On the other hand, catecholamines increased cyclic AMP production by RT4-B. The order of potency for stimulating cyclic AMP synthesis was isoproterenol greater than epinephrine much greater than norepinephrine much greater than dopamine, and the stimulation was effectively inhibited by the nonselective beta-adrenergic receptor antagonist propranolol, but not by the beta 1-adrenergic receptor antagonist atenolol, suggesting that RT4-B cells express beta 2-adrenergic receptors. The differentiating agent N6,2'-O-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) enhanced the 5-HT-induced [Ca2+]i increase, but not the catecholamine-induced cyclic AMP production. The increase in the 5-HT response paralleled the increase in the density of 5-HT2 receptors. n-Butyric acid (2 mM) and 8-bromoadenosine 3',5'-monophosphate (1 mM) also increased the 5-HT response, and the sum of these increases was nearly equal to that induced by dibutyryl-cAMP. These results indicate that RT4-B is a novel model cell line for the study of 5-HT2 and beta 2-adrenergic receptors and their second messenger responses and for the analysis of the mechanisms how 5-HT2 receptor gene expression is controlled.  相似文献   

8.
The effects of isoproterenol on intracellular calcium concentration   总被引:9,自引:0,他引:9  
beta-Adrenergic agonist, isoproterenol (ISO), is a potent relaxant of tracheal smooth muscle and inhibits carbachol-induced contraction. The effect of ISO on intracellular free Ca2+ concentration ([Ca2+]i) was examined in bovine tracheal smooth muscle strips, employing aequorin as Ca2+ indicator. Surprisingly, 10 microM ISO induces a 5-fold increase in [Ca2+]i which then gradually declines but still remains higher than basal after 1 h of stimulation. The ISO-induced increase in [Ca2+]i is dose-dependent, and the ED50 is approximately 50 nM. The ISO-induced increase in [Ca2+]i is inhibited by a beta-receptor blocker, propranolol, not by an alpha-blocker, phentolamine. The ISO-induced rise in [Ca2+]i is dependent on extracellular Ca2+. Forskolin, an adenylate cyclase activator, and vasoactive intestinal peptide, which is known to stimulate adenylate cyclase via a specific receptor in this tissue, have similar effects on [Ca2+]i, suggesting that a rise in cyclic AMP concentration mediates this effect of ISO on [Ca2+]i. Pretreatment of muscle with 10 microM ISO inhibits both the initial Ca2+ transient and the contractile response induced by 0.3 microM carbachol. Conversely, in carbachol-pretreated muscle strips, addition of ISO causes a fall rather than a rise in [Ca2+]i, and an inhibition of contraction. These results indicate that ISO has effects on cellular Ca2+ metabolism at more than a single site in bovine tracheal smooth muscle, that these effects are different in control and carbachol-pretreated muscle, and that the relaxing effect of ISO is not due solely to its effect on Ca2+ metabolism.  相似文献   

9.
The effects of the beta-adrenoceptor agonist, isoprenaline, on Ca2+ mobilization and inositol phosphate formation in parotid acinar cells were examined. Isoprenaline (2 microM) failed to increase cytosolic [Ca2+] in acinar cells, as measured by Fura-2 fluorescence, even in the presence of a phosphodiesterase inhibitor. Likewise, neither the 8-bromo nor the dibutyryl derivatives of cAMP (both at 2 mM concentration) increased [Ca2+]i. However, in confirmation of results previously published, a higher concentration of isoprenaline (200 microM) increased cytosolic [Ca2+]i of rat parotid acinar cells, from 104 +/- 4 nM to 151 +/- 18 nM. The increase in [Ca2+]i in response to isoprenaline, while transient in the absence of extracellular Ca2+, was sustained in Ca2(+)-containing medium. This isoprenaline-stimulated Ca2+ signal was more potently antagonized by phentolamine than by propranolol, suggesting that the higher concentration of isoprenaline activated alpha-adrenoceptors. Furthermore, the Ca2+ signal generated in response to the alpha-adrenoceptor agonist, phenylephrine, also was blocked by the same concentrations of propranolol necessary to block the effects of isoprenaline, suggesting that propranolol may block alpha-adrenoceptors under certain experimental conditions. The high concentration of (-)isoprenaline (200 microM) also increased inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate formation 45% within 30 s. Analogous to the increase in intracellular Ca2+, the formation of inositol phosphates stimulated by isoprenaline was more potently antagonized by the alpha-adrenoceptor antagonist, phentolamine, than by the beta-adrenoceptor antagonist, propranolol, again suggesting that isoprenaline interacts with alpha-adrenoceptors on parotid cells. Thus, the effects of isoprenaline on [Ca2+]i do not appear to be mediated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The fluorescent intracellular Ca2+ indicator, fura2/AM, was used to determine the effects of carbachol, cholecystokinin octapeptide (CCK-8), gastrin and histamine on intracellular Ca2+ ([Ca2+]i) in parietal cells from rabbit gastric mucosa enriched to more than 95% purity by a new Nycodenz gradient/centrifugal elutriation technique. Changes in [Ca2+]i in response to the same agonists were also measured in enriched chief cells. Carbachol, histamine, gastrin and CCK-8 increased parietal cell [Ca2+]i with the response to carbachol greater than CCK -8 = histamine = gastrin. Prestimulation with msximal doses of carbachol blocked histamine-induced increases in [Ca2+]i. In chief cells, carbachol increased [Ca2+]i but to a lesser degree than CCK-8, while histamine had no significant effect on [Ca2+]i. Neither removal of extracellular Ca2+ coupled with acute addition of 1 mM EGTA nor addition of the Ca2+-channel blocker nicardipine prevented agonist-induced changes in [Ca2+]i in either cell type. In the presence and absence of 10 mM LiCl2, carbachol and CCK-8 were found to increase inositol trisphosphate (IP3) content in both parietal and chief cells while histamine had no significant effect on this phosphoinositide hydrolysis product. From these results and previous observations with gastric glands (Chew, C.S. (1986) Am. J. Physiol. 13, G814-G823) we conclude that: carbachol, CCK-8, gastrin and histamine increase parietal cell [Ca2+]i initially by release of Ca2+ from the same intracellular store(s); the release of [Ca2+]i in response to carbachol and CCK-8 in both chief and parietal cells appear to be mediated by IP3; however, other mechanisms may be involved in histamine-induced release of parietal cell Ca2+.  相似文献   

11.
Ornithine decarboxylase in a human parotid gland adenocarcinoma cell line was induced by both cholinergic (carbachol) and beta-adrenergic (isoproterenol) sialagogues. The enzyme protein level, measured with anti-peptide antiserum, as well as the enzyme activity, was found to be high in unstimulated cells and to increase approximately 2-fold on stimulation, while the mRNA level increased 3-4 fold, as revealed by Northern hybridization. The rise in activity was completely blocked by the simultaneous addition of antagonists or actinomycin D. These results suggest that receptor-mediated stimulation of ornithine decarboxylase activity by sialagogues involves alterations in the level of mRNA and that the proliferative responses of human parotid cells to these sialagogues resemble those of the murine parotid gland.  相似文献   

12.
This study examines the effect of membrane potential on divalent cation entry in dispersed parotid acini following stimulation by the muscarinic agonist, carbachol, and during refill of the agonist-sensitive internal Ca2+ pool. Depolarizing conditions (addition of gramicidin to cells in Na(+)-containing medium or incubation of cells in medium with elevated [K+]) prevent carbachol-stimulated hyperpolarization of acini and also inhibit carbachol activation of Ca2+ and Mn2+ entry into these cells. Conditions promoting hyperpolarization (cells in medium with Na+ or with N-methyl-D-glucamine instead of Na+) enhance carbachol stimulation of divalent cation entry. Intracellular Ca2+ release (initial increase in [Ca2+]i) does not appear to be affected by these manipulations. Mn2+ entry into resting and internal Ca2+ pool-depleted cells (10-min carbachol stimulation in a Ca(2+)-free medium) is similarly affected by membrane potential modulations, and refill of the internal pool by Ca2+ is inhibited by depolarization. The inhibitory effects of depolarization on divalent cation entry can be overcome by increasing extracellular [Ca2+] or [Mn2+]. These data demonstrate that the modulation of Ca2+ entry into parotid acini by membrane potential is most likely due to effects on the electrochemical gradient (Em-ECa) for Ca2+ entry.  相似文献   

13.
The beta-adrenergic agonist 1-isoproterenol evokes an acute (less than 5 min) stimulation of endocytosis, hexose transport and amino acid transport, measured by the temperature-sensitive uptake of HRP, 3H-DG and 14C-AIB, in mouse kidney cortex slices. This stimulation is concentration dependent and is maximal at 10(-8)-10(-7) M isoproterenol. Peroxidase cytochemistry showed that the hormonal increase in HRP uptake is confined to proximal tubules. The rapid membrane response is abolished in a calcium-free medium and by the beta-adrenergic antagonist propranolol, indicating Ca2+- and beta-adrenoreceptor-dependence. Isoproterenol (1 microM) rapidly (less than 30 sec) stimulates the influx and efflux of 45Ca in cortex slices. Isoproterenol also decreased mitochondrial 45Ca and increased soluble 45Ca. These results indicate that beta-adrenergic stimulation of membrane transport functions involves an increased influx of extracellular calcium and a mobilization of intracellular (mitochondrial) calcium. An increase in cytosolic Ca2+ concentration appears to be the regulatory signal for these membrane transport processes.  相似文献   

14.
We have used human neuroblastoma NB-OK1 cells to investigate the regulation of neurite outgrowth. Carbachol suppressed forskolin-stimulated neurite outgrowth in NB-OK1 cells although forskolin-stimulated cAMP levels were enhanced. The dose-response curve for this suppression was very similar to that for stimulation of inositol monophosphate (IP1) formation and for stimulation of the initial rise of [Ca2+]i elicited by carbachol. Carbachol-mediated changes in neurite outgrowth, IP1 formation and [Ca2+]i displayed high sensitivity for pirenzepine but low sensitivity for AF-DX116. Inhibition of intracellular calcium release with TMB-8 prevented the suppressive effect of carbachol on forskolin-stimulated neurite outgrowth. Hence we describe for the first time a relationship between neurite outgrowth and inositol triphosphate-triggered calcium release mediated by carbachol in the human neuron-derived cell line.  相似文献   

15.
The effects of vasoactive intestinal polypeptide (VIP) on exocrine protein secretion were studied in enzymatically dispersed cell aggregates from rat parotid glands. VIP (10(-9) - 10(-7) M) stimulated secretion of alpha-amylase in a dose-dependent manner. The VIP-induced release of alpha-amylase was potentiated in the presence of a phosphodiesterase inhibitor. Basal levels of cyclic AMP of the dispersed cells were increased 6.7-fold after stimulation for 10 min by VIP (10(-7) M). The VIP-induced release of alpha-amylase was reduced by 40% when cells were incubated in a Ca2+-free medium in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Efflux of 45Ca2+ was significantly increased over basal levels by stimulation with VIP (10(-8) and 10(-7) M), but this increased efflux was approximately only half the increased efflux induced by carbachol (10(-5) M). VIP had no effect on the incorporation of [14C]leucine into protein by parotid cells, whereas incorporation was reduced to 30% of the control value by carbachol (10(-5) M). Thus, the VIP-ergic secretory response in the rat parotid gland is associated with a raised intracellular cyclic AMP level and the mobilisation of a different intracellular Ca2+ pool than that mobilised by carbachol. It is, therefore, closely analogous to the beta-adrenergic response.  相似文献   

16.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

17.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

18.
The regulation of [Ca2+]i in rat pinealocytes was studied using the fluorescent indicator quin2. Pinealocyte resting [Ca2+]i was approximately 100 nM; this rapidly decreased in low Ca2+ medium (approximately 10 microM), indicating there was a high turnover of [Ca2+]i in these cells. Norepinephrine (NE, 10(-6) M) increased [Ca2+]i to approximately 350 nM within 1 min; [Ca2+]i then remained elevated for 30 min. The relative potency of adrenergic agonists was NE greater than phenylephrine much greater than isoproterenol. Phentolamine (10(-6) M) and prazosin (10(-8) M) blocked the effects of adrenergic agonists; in contrast, propranolol (10(-6) M) or yohimbine (10(-6) M) had little or no effect. These observations indicate NE acts via alpha 1-adrenoceptors to elevate [Ca2+]i. The [Ca2+]i response to NE did not occur when [Ca2+]e was reduced to approximately 10 microM by adding EGTA 5s before NE, indicating an increase in net Ca2+ influx is involved rather than mobilization of Ca2+ from intracellular stores. The effect of NE was not blocked by nifedipine (10(-6) M), which did block a K+-induced increase in [Ca2+]i, presumably involving voltage-sensitive channels. Ouabain (10(-5) M) caused a gradual increase in [Ca2+]i; this increase was not blocked by nifedipine. Together these data indicate that pinealocyte [Ca2+]i may be influenced by mechanisms regulated by alpha 1-adrenoceptors, voltage-dependent Ca2+ channels, and perhaps a Na+/Ca2+ exchange mechanism stimulated by ouabain. These studies indicate that the pinealocyte is an interesting model to use to study the adrenergic regulation of [Ca2+]i because of the rapid and prolonged changes in [Ca2+]i produced by alpha 1-adrenoceptor activation.  相似文献   

19.
Ca(2+)mobilization induced by ATP, isoproterenol and the Ca(2+)-ATPase inhibitor thapsigargin in the human submandibular duct cell line A253 was investigated using the Ca(2+)-sensitive fluorescent indicator fura-2. ATP and isoproterenol increased cytosolic free Ca(2+)([Ca(2+)](i)) and subsequent exposure to thapsigargin after ATP or isoproterenol stimulation caused a further increase in [Ca(2+)](i). However, ATP and isoproterenol were not able to elicit a further increase in [Ca(2+)](i)after exposure of the cells to thapsigargin. Relatively few cells reacted to isoproterenol stimulation, but nearly all cells reacted to isoproterenol if ATP was added together with, or prior to isoproterenol stimulation. Moreover, the effect of ATP was potentiated by prior or simultaneous addition of isoproterenol. Furthermore, ATP decreased [Ca(2+)](i)in the presence of thapsigargin probably due to agonist-induced export of intracellular calcium. The results may suggest the existence of three thapsigargin sensitive pools; one opened by ATP acting through P(2)-purinergic receptors and IP(3), one opened by isoproterenol acting through beta2-adrenergic receptors, and a third pool not sensitive to ATP or isoproterenol.  相似文献   

20.
The effects of isoproterenol (ISO), a beta-adrenoceptor agonist, on cytosolic free Ca2+ ([Ca2+]i) in rat parotid acinar cells were examined using the fluorescent Ca2(+)-indicator fura-2. At concentrations up to 1 mM, ISO caused a rapid increase in [Ca2+]i in a dose-dependent manner, while addition of 1 microM ISO, which evokes the maximum amylase secretion, had only a slight effect on [Ca2+]i. There was no such increase in [Ca2+]i with the addition (2 mM) of 8-bromo-cyclic AMP, a permeant cyclic AMP analogue. The alpha-adrenoceptor antagonist phentolamine blocked the ISO-induced [Ca2+]i increase better than the beta-adrenoceptor antagonist, propranol, and the muscarinic receptor antagonist, atropine. The IC50 value (the concentration which reduces the ISO-induced increase in [Ca2+]i by 50%) of phentolamine was estimated to be 7.6 nM, for propranolol 13.2 microM and for atropine 3.5 microM. The difference in potency between the three antagonists was similar to the difference in blocking the [Ca2+]i increase induced by phenylephrine, an alpha-adrenoceptor agonist. These results suggest that the Ca2(+)-mobilization in response to high concentrations of ISO results from an activation of alpha-adrenoceptors rather than beta-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号