首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma Y  Lieber MR 《Biochemistry》2001,40(32):9638-9646
Despite its central role in the nonhomologous DNA end joining process, we still have an incomplete picture of the interaction between Ku and DNA. Here we describe both kinetic (surface plasmon resonance or SPR) and equilibrium (electrophoretic mobility shift assay or EMSA) studies of Ku binding to linear double-stranded DNA. Ku interaction with 1-site DNA is noncooperative, as expected. Electrophoretic mobility shift assays indicate cooperativity in the binding of Ku molecules to DNA long enough for two Ku molecules to bind (2-site DNA). For the kinetic studies, we use surface plasmon resonance in which one end of the DNA molecules is linked to a surface while the other end is free to interact with Ku. We find that one Ku molecule dissociates from 1-site DNA with simple Langmuir (i.e., independent) kinetics. However, two Ku molecules associate and dissociate from 2-site DNA with a time course that cannot be described as a simple Langmuir interaction. On 3- and 4-site DNA, EMSA and SPR studies do not reveal any cooperativity, suggesting that the middle Ku does not exhibit cooperative interaction with the two Ku molecules bound at the DNA ends. These results indicate that Ku molecules can demonstrate cooperative interaction, and this is influenced by their positions along the DNA.  相似文献   

2.
Single strand-specific s1 nuclease prepared as previously described from crude alpha amylase by DEAE-cellulose chromatography also contains nuclease which degrades double strand nucleic acid. The double strand activity can be removed by repeating the DEAE-cellulose chromatography procedure at least two additional times. S1 nuclease prepared by this procedure does not degrade double strand sheared DNA as measured by Sephadex chromatography. Under the same conditions single strand DNA is completely degraded. Thus, S1 nuclease prepared by this procedure is suitable for use in removing single strand regions in DNA/DNA duplexes and DNA/RNA hybrids.  相似文献   

3.
A benzoannulated delta-carboline with a phenyl substituent has been covalently tethered to the 3'-end of a triplex-forming oligonucleotide and its ability to bind and stabilize DNA triple helices has been examined by various spectroscopic methods. UV thermal melting experiments were conducted with different hairpin duplexes and with a complementary single-stranded oligonucleotide as targets for the conjugate. The delta-carboline ligand preferentially binds triplexes over duplexes and leads to a temperature increase of the triplex-to-duplex transition by up to 23 degrees C. The results obtained from UV, CD and fluorescence measurements suggest that the delta-carboline ligand exhibits specific interactions with a triplex and favors binding by intercalation at the triplex-duplex junction.  相似文献   

4.
The effects of ions (i.e. Na+, Mg2+ and polyamines including spermidine and spermine) on the stability of various DNA oligonucleotides in solution were studied. These synthetic DNA molecules contained sequences that mimic various cellular DNA structures, such as duplexes, bulged loops, hairpins and/or mismatched base pairs. Melting temperature curves obtained from the ultraviolet spectroscopic experiments indicated that the effectiveness of the stabilization of cations on the duplex formation follows the order of spermine > spermidine > Mg2+ > Na+ > Tris–HCl buffer alone at pH 7.3. Circular dichroism spectra showed that salts and polyamines did not change the secondary structures of those DNA molecules under study. Surface plasmon resonance (SPR) observations suggested that the rates of duplex formation are independent of the kind of cations used or the structure of the duplexes. However, the rate constants of DNA duplex dissociation decrease in the same order when those cations are involved. The enhancement of the duplex stability by polyamines, especially spermine, can compensate for the instability caused by abnormal structures (e.g. bulged loops, hairpins or mismatches). The effects can be so great as to make the abnormal DNAs as stable as the perfect duplex, both kinetically and thermodynamically. Our results may suggest that the interconversion of various DNA structures can be accomplished readily in the presence of polyamine. This may be relevant in understanding the role of DNA polymorphism in cells.  相似文献   

5.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

6.
The degree of binding of "33258 Hoechst" to DNA and nucleohistone has been determined by equilibrium dialysis and the properties of the complexes have been followed by different optical and electro-optical methods, after determining the orientation of the main transition moments within the dye molecule. The binding isotherm was found composed of a Langmuir-type and of a strongly cooperative component. The existence of two bound species yielded a continuous variation of most of the properties of the complexes studied as the amount of binding increased, while the hydrodynamic properties of the macromolecules were not affected. At low binding, the strongly bound dye molecules appeared to bind to highly fluorescent sites with their long axis oriented at 45 degree to the helix axis. As the binding proceeds, less fluorescent sites are cooperatively occupied and the inclination of these ligand molecules becomes closer to that of the base planes. These results are compatible with the formation of two external complexes with the double helical structure.  相似文献   

7.
A spectroscopic assay for detection of extrahelical thymine residues in DNA heteroduplexes under their modification by potassium permanganate has been developed. The assay is based on increase in absorbance at 420 nm due to accumulation of thymidine oxidation intermediates and soluble manganese dioxide. The analysis was carried out using a set of 19-bp DNA duplexes containing unpaired thymidines opposite tetrahydrofuranyl derivatives mimicking a widespread DNA damage (apurinic (AP) sites) and a library of 50-bp DNA duplexes containing all types of base mismatches in different surroundings. The relation between the selectivity of unpaired T oxidation and the thermal stability of DNA double helix was investigated. The method described here was shown to discriminate between DNA duplexes with one or two AP sites and to reveal thymine-containing mismatches and all noncanonical base pairs in AT-surroundings. Comparative results of CCM analysis and the rapid photometric assay for mismatch detection are demonstrated for the first time in the same model system. The chemical reactivity of target thymines was shown to correlate with local disturbance of double helix at the mismatch site. As the spectroscopic assay does not require the DNA cleavage reaction and gel electrophoresis, it can be easily automated and used for primary screening of somatic mutations.  相似文献   

8.
Ascididemin and Meridine are two marine compounds with pyridoacridine skeletons known to exhibit interesting antitumour activities. These molecules have been reported to behave like DNA intercalators. In this study, dialysis competition assay and mass spectrometry experiments were used to determine the affinity of ascididemin and meridine for DNA structures among duplexes, triplexes, quadruplexes and single-strands. Our data confirm that ascididemin and meridine interact with DNA but also recognize triplex and quadruplex structures. These molecules exhibit a significant preference for quadruplexes over duplexes or single-strands. Meridine is a stronger quadruplex ligand and therefore a stronger telomerase inhibitor than ascididemin (IC50=11 and >80 muM, respectively in a standard TRAP assay).  相似文献   

9.
4', 6-Diamidine-2-phenylindole forms fluorescent complexes with synthetic DNA duplexes containing AT, AU and IC base pairs; no fluorescent complexes were observed with duplexes containing GC base pairs or with duplexes containing a single AT base pair sandwiched between GC pairs. The binding site size is one molecule of dye per 3 base pairs. The intrinsic binding constants are higher for alternating sequence duplexes than for the corresponding homopolymer pairs. With the exception of the four-stranded helical poly rI which exhibits considerable fluorescence enhancement upon binding of the ligand, none of the single- or multi- stranded polyribonucleotides and ribo-deoxyribonucleotide hybrid structures form fluorescent complexes with the dye. Poly rI is the only RNA which forms a DNA B-like structure (Arnott et al. (1974) Biochem. J. 141, 537). The B conformation of the helix and the absence of guanine appear to be the major determinants of the specificity of the fluorescent binding mode of the dye. Nonfluorescent interactions of the dye with polynucleotides are nonspecific; UV absorption and circular dichroic spectra demonstrate binding to synthetic single- and double-stranded DNA and RNA analogs, including those containing GC base pairs.  相似文献   

10.
The bacterium Deinococcus radiodurans is extremely resistant to high levels of DNA-damaging agents, including gamma rays and ultraviolet light that can lead to double-stranded DNA breaks. Surprisingly, the organism does not appear to have a RecBCD enzyme, an enzyme that is critical for double-strand break repair in many other bacteria. The D. radiodurans genome does encode a protein whose closest characterized homologues are RecD subunits of RecBCD enzymes in other bacteria. We have purified this novel D. radiodurans RecD protein and characterized its biochemical activities. The D. radiodurans RecD protein is a DNA helicase that unwinds short (20 base pairs) DNA duplexes with either a 5'-single-stranded tail or a forked end, but not blunt-ended or 3'-tailed duplexes. Duplexes with 10-12 nucleotide (nt) 5'-tails are good unwinding substrates and are bound tightly, while DNA with shorter tails (4-8 nt) are poor unwinding substrates and are bound much less tightly. The RecD protein is much less efficient at unwinding slightly longer substrates (52 or 76 base pairs, with 12 nt 5'-tails). Unwinding of the longer substrates is stimulated somewhat (4-5-fold) by the single-stranded DNA-binding protein from D. radiodurans. These results show that the D. radiodurans RecD protein is a DNA helicase with 5'-3' polarity and low processivity.  相似文献   

11.
T Oida 《Journal of biochemistry》1986,100(6):1533-1542
Binding of free fatty acid (FFA) to human serum albumin (HSA) was studied by 1H-NMR spectroscopy. Addition of FFA to defatted HSA at a mole ratio (FFA/HSA) up to 4 caused a small change in the NMR spectrum of HSA. The integrated intensity of sharp signals of the histidine C2 proton region of HSA decreased as the mole ratio was increased from 0 to 4 for both medium chain (lauric acid) and long chain (palmitic acid, stearic acid, and oleic acid) FFA's. By contrast, when the mole ratio was increased above 4, several histidine C2 proton signals coalesced and sharpened. Therefore, the HSA molecule appears to have a different conformation on binding with more than 4 FFA molecules, which allows increased local motions of HSA. By analyzing the NMR difference spectra of HSA with various amounts of FFA, the conformational change of HSA was investigated in more detail. The difference spectrum between [HSA + 2FFA] and [HSA + FFA] was almost the same as the difference spectrum between [HSA + FFA] and [HSA], which suggests that one primary site binds a pair of FFA molecules. These results are consistent with those of a spectroscopic study with polyene fatty acids (Berde, C.B., et al. (1979) J. Biol. Chem. 254, 391-400). The existence of a bimolecular complex of FFA molecules in aqueous solution may facilitate this type of binding. Similarly, it was found that the third and fourth FFA molecules were bound to a secondary site on HSA, because the difference spectrum between [HSA + 4FFA] and [HSA + 3FFA] was nearly equal to the difference spectrum between [HSA + 3FFA] and [HSA + 2FFA]. Further addition of FFA resulted in a drastic spectral change of HSA. The NMR difference spectrum between HSA solutions with perdeuterated FFA and those with undeuterated FFA gave the 1H-NMR spectra of FFA molecules bound to HSA. Titration of FFA revealed that, in the binding to the primary site of HSA, the carboxyl group of FFA is tightly bound to the protein, whereas the methyl group is not so firmly bound. In contrast, in the binding to low affinity sites, the methyl group is bound to HSA as tightly as other portions of the molecule.  相似文献   

12.
The structures of the complexes formed between 9-amino-[N-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG5BrUACG)2 and d(CGTACG)2 have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 Å. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).  相似文献   

13.
The monoclonal antibody S9.6 binds DNA–RNA hybrids with high affinity, making it useful in research and diagnostic applications, such as in microarrays and in the detection of R‐loops. A single‐chain variable fragment (scFv) of S9.6 was produced, and its affinities for various synthetic nucleic acid hybrids were measured by surface plasmon resonance (SPR). S9.6 exhibits dissociation constants of approximately 0.6 nM for DNA–RNA and, surprisingly, 2.7 nM for RNA–RNA hybrids that are AU‐rich. The affinity of the S9.6 scFv did not appear to be strongly influenced by various buffer conditions or by ionic strength below 500 mM NaCl. The smallest epitope that was strongly bound by the S9.6 scFv contained six base pairs of DNA–RNA hybrid. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
High affinity interaction between octameric mitochondrial creatine kinase (MtCK) and the phospholipid cardiolipin in the inner mitochondrial membrane plays an important role in metabolite channeling between MtCK and inner membrane adenylate translocator, which itself is tightly bound to cardiolipin. Three C-terminal basic residues revealed as putative cardiolipin anchors in the x-ray structures of MtCK and corresponding to lysines in human sarcomeric MtCK (sMtCK) were exchanged by in vitro mutagenesis (K369A/E, K379Q/A/E, K380Q/A/E) to yield double and triple mutants. sMtCK proteins were bacterially expressed, purified to homogeneity, and verified for structural integrity by enzymatic activity, gel filtration chromatography, and CD spectroscopy. Interaction with cardiolipin and other acidic phospholipids was quantitatively analyzed by light scattering, surface plasmon resonance, and fluorescence spectroscopy. All mutant sMtCKs showed a strong decrease in vesicle cross-linking, membrane affinity, binding capacity, membrane ordering capability, and binding-induced changes in protein structure as compared with wild type. These effects did not depend on the nature of the replacing amino acid but on the number of exchanged lysines. They were moderate for Lys-379/Lys-380 double mutants but pronounced for triple mutants, with a 30-fold lower membrane affinity and an entire lack of alterations in protein structure compared with wild-type sMtCK. However, even triple mutants partially maintained an increased order of cardiolipin-containing membranes. Thus, the three C-terminal lysines determine high affinity sMtCK/cardiolipin interaction and its effects on MtCK structure, whereas low level binding and some effect on membrane fluidity depend on other structural components. These results are discussed in regard to MtCK microcompartments and evolution.  相似文献   

15.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):303-316
Electron microscopy of purified full-length linear duplex molecules produced by bleomycin reaction with PM2 DNA revealed low frequencies of closed circular duplex molecules as well as linear duplex molecules with opposed ends (cyclized molecules which have dissociated to yield a gap between the termini). The occurrence of these latter forms indicates that double-strand scissions produced by bleomycin reaction consist of two single-strand scissions which are physically staggered on the complementary strands. Analysis of the temperature dependence for cyclization led to the estimate that an average of 1.7 +/- 0.44 base-pairs (2.6 +/- 0.5 base pairs without base-stacking energies) occur between the staggered breaks. The reassociated termini cannot be ligated with T4 ligase. When PM2 DNA was fragmented at several sites within each molecule, circular duplexes and linear duplexes with opposed ends with a range of sizes from 350 base pairs up to full-length PM2 DNA were observed. Analysis of the frequency distribution of lengths of these fragments indicates that most, if not all, of the specific sites for bleomycin-directed double-strand scissions in PM2 DNA contain representatives of the same two base single-stranded termini.  相似文献   

16.
Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences by Watson–Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules.  相似文献   

17.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

18.
Discrimination of base mismatches from normal Watson-Crick base pairs in duplex DNA constitutes a key approach to the detection of single nucleotide polymorphisms (SNPs). We have developed a sensor for a surface plasmon resonance (SPR) assay system to detect G-G, A-A, and C-C mismatch duplexes by employing a surface upon which mismatch-binding ligands (MBLs) are immobilized. We synthesized a new MBL consisting of 2,7-diamino-1,8-naphthyridine (damND) and immobilized it onto a CM5 sensor chip to carry out the SPR assay of DNA duplexes containing a single-base mismatch. The SPR sensor with damND revealed strong responses to all C-C mismatches, and sequence-dependent C-T and T-T mismatches. Compared to ND- and naphthyridine-azaquinolone hybrid (NA)-immobilized sensor surfaces, with affinity to mismatches composed of purine nucleotide bases, the damND-immobilized surface was useful for the detection of the mismatches composed of pyrimidine nucleotide bases.  相似文献   

19.
Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability and advanced functionality is crucial.  相似文献   

20.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号