首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The key precursors for p-hydroxybenzoate production by engineered Pseudomonas putida S12 are phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), for which the pentose phosphate (PP) pathway is an important source. Since PP pathway fluxes are typically low in pseudomonads, E4P and PEP availability is a likely bottleneck for aromatics production which may be alleviated by stimulating PP pathway fluxes via co-feeding of pentoses in addition to glucose or glycerol. As P. putida S12 lacks the natural ability to utilize xylose, the xylose isomerase pathway from E. coli was introduced into the p-hydroxybenzoate producing strain P. putida S12palB2. The initially inefficient xylose utilization was improved by evolutionary selection after which the p-hydroxybenzoate production was evaluated. Even without xylose-co-feeding, p-hydroxybenzoate production was improved in the evolved xylose-utilizing strain, which may indicate an intrinsically elevated PP pathway activity. Xylose co-feeding further improved the p-hydroxybenzoate yield when co-fed with either glucose or glycerol, up to 16.3 Cmol% (0.1 g p-hydroxybenzoate/g substrate). The yield improvements were most pronounced with glycerol, which probably related to the availability of the PEP precursor glyceraldehyde-3-phosphate (GAP). Thus, it was demonstrated that the production of aromatics such as p-hydroxybenzoate can be improved by co-feeding different carbon sources via different and partially artificial pathways. Moreover, this approach opens new perspectives for the efficient production of (fine) chemicals from renewable feedstocks such as lignocellulose that typically has a high content of both glucose and xylose and (crude) glycerol.  相似文献   

2.
A Pseudomonas putida S12 strain was constructed that is able to convert glucose to p-coumarate via the central metabolite l-tyrosine. Efficient production was hampered by product degradation, limited cellular l-tyrosine availability, and formation of the by-product cinnamate via l-phenylalanine. The production host was optimized by inactivation of fcs, the gene encoding the first enzyme in the p-coumarate degradation pathway in P. putida, followed by construction of a phenylalanine-auxotrophic mutant. These steps resulted in a P. putida S12 strain that showed dramatically enhanced production characteristics with controlled l-phenylalanine feeding. During fed-batch cultivation, 10 mM (1.7 g l−1) of p-coumarate was produced from glucose with a yield of 3.8 Cmol% and a molar ratio of p-coumarate to cinnamate of 85:1.  相似文献   

3.
The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h−1). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon.  相似文献   

4.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

5.
As a first step in the research on ethanol production from lignocellulose residues, sugar fermentation by Fusarium oxysporum in oxygen-limited conditions is studied in this work. As a substrate, solutions of arabinose, glucose, xylose and glucose/xylose mixtures are employed. The main kinetic and yield parameters of the process are determined according to a time-dependent model. The microorganism growth is characterized by the maximum specific growth rate and biomass productivity, the substrate consumption is studied through the specific consumption rate and biomass yield, and the product formation via the specific production rate and product yields. In conclusion, F. oxysporum can convert glucose and xylose into ethanol with product yields of 0.38 and 0.25, respectively; when using a glucose/xylose mixture as carbon source, the sugars are utilized sequentially and a maximum value of 0.28 g/g ethanol yield is determined from a 50% glucose/50% xylose mixture. Although fermentation performance by F.␣oxysporum is somewhat lower than that of other fermenting microorganisms, its ability for simultaneous lignocellulose-residue saccharification and fermentation is considered as a potential advantage.  相似文献   

6.
Fourteen phytopathogenic fungi were tested for their ability to transform the major ginsenosides to the active minor ginsenoside Rd. The transformation products were identified by TLC and HPLC, and their structures were assigned by NMR analysis. Cladosporium fulvum, a tomato pathogen, was found to transform major ginsenoside Rb1 to Rd as the sole product. The following optimum conditions for transforming Rd by C. fulvum were determined: the time of substrate addition, 24 h; substrate concentration, 0.25 mg ml−1; temperature, 37°C; pH 5.0; and biotransformation period, 8 days. At these optimum conditions, the maximum yield was 86% (molar ratio). Further, a preparative scale transformation with C. fulvum was performed at a dose of 100 mg of Rb1 by a yield of 80%. This fungus has potential to be applied on the preparation for Rd in pharmaceutical industry.  相似文献   

7.
Two strains (KM3 and KM5) of halophilic methylobacteria isolated from Red Sea algae do not require vitamin B12 for growth and can use methanol, methylamine, dimethylamine, trimethylamine, dimethyl sulfide, and fructose as sources of carbon and energy. The cells of these strains are gram-negative motile monotrichous (strain KM3) or peritrichous (strain KM5) rods. The strains are strictly aerobic and require Na+ ions but not growth factors. They are oxidase-and catalase-positive and reduce nitrates to nitrites. Both strains can grow in a temperature range of 4 to 37°C (with optimal growth at 29–34°C), at pH between 5.5 and 8.5 (with optimal growth at pH 7.5–8.0), and in a range of salt concentrations between 0.5 and 15% NaCl (with optimal growth at 5–9% NaCl). The phospholipids of these strains are dominated by phosphatidylethanolamine and phosphatidylglycerol and also include phosphatidylcholine, phosphatidylserine, and cardiolipin. The dominant fatty acids are C16:1ω7c and C16:0. The major ubiquinone is Q8. The cells accumulate ectoin, glutamate, and sucrose as intracellular osmoprotectants. The strains implement the 2-keto-3-deoxy-6-phosphogluconate-dependent variant of the ribulose monophosphate pathway. The G+C content of the DNA is 44.4–44.7 mol%. Analysis of the 16S rRNA genes showed that both strains belong to Gammaproteobacteria and have a high degree of homology (99.4%) to Methylophaga marina ATCC 35842T. Based on the data of polyphasic taxonomy, isolates KM3 and KM5 are identified as new strains M. marina KM3 (VKM B-2386) and M. marina KM5 (VKM B-2387). The ability of these strains to produce auxins (indole-3-acetic acid) suggests their metabolic association with marine algae.  相似文献   

8.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

9.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

10.
Pseudomonas putida F61-a defective in formaldehyde dehydrogenase was derived from the parent strain (F61). The bacterial strain grown on a nutrient broth supplemented with 1% glucose exhibited high formaldehyde dismutase activity. The dismutation and cross-dismutation of aldehydes occurred stoichiometrically in the resting-cells reaction. Many kinds of aliphatic and aromatic aldehydes that are scarcely soluble in water were utilized in these reactions as well as soluble ones. Formaldehyde at an extremely high concentration (0.5 M) was almost completely converted to equimolar amounts of methanol and formic acid by the resting-cells, which could be used three times without a loss of activity. The cross-dismutation between acrolein and formaldehyde occurred efficiently in the resting-cells reaction with 0.1 M each substrate. The alcohol: aldehyde oxidoreduction of the short-chain substrates was also shown by the resting-cells of a mutant (M6) unable to grow on n-propanol.  相似文献   

11.
A derivative strain of Escherichia coli MG1655 for d-lactate production was constructed by deleting the pflB, adhE and frdA genes; this strain was designated “CL3.” Results show that the CL3 strain grew 44% slower than its parental strain under nonaerated (fermentative) conditions due to the inactivation of the main acetyl-CoA production pathway. In contrast to E. coli B and W3110 pflB derivatives, we found that the MG1655 pflB derivative is able to grow in mineral media with glucose as the sole carbon source under fermentative conditions. The glycolytic flux was 2.8-fold higher in CL3 when compared to the wild-type strain, and lactate yield on glucose was 95%. Although a low cell mass formed under fermentative conditions with this strain (1.2 g/L), the volumetric productivity of CL3 was 1.31 g/L h. In comparison with the parental strain, CL3 has a 22% lower ATP/ADP ratio. In contrast to wild-type E. coli, the ATP yield from glucose to lactate is 2 ATP/glucose, so CL3 has to improve its glycolytic flux in order to fulfill its ATP needs in order to grow. The aceF deletion in strains MG1655 and CL3 indicates that the pyruvate dehydrogenase (PDH) complex is functional under glucose-fermentative conditions. These results suggest that the pyruvate to acetyl-CoA flux in CL3 is dependent on PDH activity and that the decrease in the ATP/ADP ratio causes an increase in the flux of glucose to lactate.  相似文献   

12.
As has been previously shown, Saccharomyces cerevisiae grown in 2% or 0.025% glucose uses this carbohydrate by the fermentative or oxidative pathways, respectively. Depending on the glucose concentration in the medium, the effect of the addition of H2O2 on the level of ATP and on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity differed. In the presence of 2% glucose, ATP and GAPDH decreased sharply during the first few minutes of treatment, whereas in the presence of 0.025% glucose, GAPDH activity decreased similarly, but the ATP level remained practically unchanged. The addition of 3 mM glutathione to the culture media prevented the depletion of ATP levels and GAPDH activity in the presence of H2O2. Catalase and superoxide dismutase activities did not vary significantly when yeast cells were grown either in 2% or in 0.025% glucose.  相似文献   

13.
The regulation of methanol metabolism in Nocardia sp. 239 was investigated. Growth on mixtures of glucose or acetate plus methanol in batch cultures resulted in simultaneous utilization of the substrates. The presence of glucose, but not of acetate, repressed synthesis of the ribulose monophosphate (RuMP) cycle enzymes hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), and methanol was used as an energy source only. Comparable results were obtained following addition of formaldehyde (fed-batch system) to a culture growing on glucose. The synthesis of the methanol dissimilatory and assimilatory enzymes in Nocardia sp. 239 thus appears to be controlled differently. Methanol and/or formaldehyde induce the synthesis of these enzymes, but under carbon-excess conditions their inducing effect on HPS and HPI synthesis is completely overruled by glucose, or metabolites derived from it. Repression of the synthesis of these RuMP cycle enzymes was of minor importance under carbon- and energy-limiting conditions in chemostat cultures. Addition of a pulse of glucose to a formaldehyde-limited (2.5 mmol l–1 h–1) fed-batch culture resulted in a decrease in the levels of several enzymes of methanol metabolism (including HPI), whereas the HPS levels remained relatively constant. Increasing HPS/HPI activity ratios were also observed with increasing growth rates in formaldehyde-limited chemostat cultures. The data indicate that additional mechanisms, the identity of which remains to be elucidated, are involved in controlling the levels of these C1-specific enzymes in Nocardia sp. 239.Abbreviations HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - RuMP ribulose monophosphate - FBP fructose-1,6-bisphosphate - PFK 6-phosphofructokinase  相似文献   

14.
Acetobacter methanolicus MB58 can grow on methanol. Since this substrate exhibits to be energy deficient there must be a chance to oxidize methanol to CO2 merely for purpose of energy generation. For the assimilation of methanol the FBP variant of the RuMP pathway is used. Hence methanol can be oxidized cyclically via 6-phosphogluconate. Since Acetobacter methanolicus MB58 possesses all enzymes for a linear oxidation via formate the question arises which of both sequences is responsible for generation of the energy required. In order to clarify this the linear sequence was blocked by inhibiting the formate dehydrogenase with hypophosphite and by mutagenesis inducing mutants defective in formaldehyde or formate dehydrogenase. It has been shown that the linear dissimilatory sequence is indispensable for methylotrophic growth. Although the cyclic oxidation of formaldehyde to CO2 has not been influenced by hypophosphite and with mutants both the wild type and the formaldehyde dehydrogenase defect mutants cannot grown on methanol. The cyclic oxidation of formaldehyde does not seem to be coupled to a sufficient energy generation, probably it operates only detoxifying and provides reducing equivalents for syntheses. The regulation between assimilation and dissimilation of formaldehyde in Acetobacter methanolicus MB58 is discussed.Abbreviations ATP Adenosine-5-triphosphate - DCPIP 2,6-dichlorphenolindophenol - DW dry weight - ETP electron transport phosphorylation - FBP fructose-1,6-bisphosphate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PMS phenazine methosulfate - RuMP ribulose monophosphate - Ru5P ribulose-5-phosphate - SDS sodiumdodecylsulphate - TCA tricarboxylic acid - TYB toluylene blue Dedicated to Prof. Dr. Dr. S. M. Rapoport on occasion of his 75th birthday  相似文献   

15.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

16.
Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.  相似文献   

17.
Biological reduction of nitric oxide (NO) chelated by ferrous ethylenediaminetetraacetate (Fe(II)EDTA) to N2 is one of the core processes in a chemical absorption–biological reduction integrated technique for nitrogen oxide (NO x ) removal from flue gases. A new isolate, identified as Pseudomonas sp. DN-2 by 16S rRNA sequence analysis, was able to reduce Fe(II)EDTA-NO. The specific reduction capacity as measured by NO was up to 4.17 mmol g DCW−1 h−1. Strain DN-2 can simultaneously use glucose and Fe(II)EDTA as electron donors for Fe(II)EDTA-NO reduction. Fe(III)EDTA, the oxidation of Fe(II)EDTA by oxygen, can also serve as electron acceptor by strain DN-2. The interdependency between various chemical species, e.g., Fe(II)EDTA-NO, Fe(II)EDTA, or Fe (III)EDTA, was investigated. Though each complex, e.g., Fe(II)EDTA-NO or Fe(III)EDTA, can be reduced by its own dedicated bacterial strain, strain DN-2 capable of reducing Fe(III)EDTA can enhance the regeneration of Fe(II)EDTA, hence can enlarge NO elimination capacity. Additionally, the inhibition of Fe(II)EDTA-NO on the Fe(III)EDTA reduction has been explored previously. Strain DN-2 is probably one of the major contributors for the continual removal of NO x due to the high Fe(II)EDTA-NO reduction rate and the ability of Fe(III)EDTA reduction.  相似文献   

18.
The FDH1 gene of Candida boidinii encodes an NAD+-dependent formate dehydrogenase, which catalyzes the last reaction in the methanol dissimilation pathway. FDH1 expression is strongly induced by methanol, as are the promoters of the genes AOD1 (alcohol oxidase) and DAS1 (dihydroxyacetone synthase). FDH1 expression can be induced by formate when cells are grown on a medium containing glucose as a carbon source, whereas expression of AOD1 and DAS1 is completely repressed in the presence of glucose. Using deletion analyses, we identified two cis-acting regulatory elements, termed UAS-FM and UAS-M, respectively, in the 5 non-coding region of the FDH1 gene. Both elements were necessary for full induction of the FDH1 promoter by methanol, while only the UAS-FM element was required for full induction by formate. Irrespective of whether induction was achieved with methanol or formate, the UAS-FM element enhanced the level of induction of the FDH1 promoter in a manner dependent on the number of copies, but independent of their orientation, and also converted the ACT1 promoter from a constitutive into an inducible element. Our results not only provide a powerful promoter for heterologous gene expression, but also yield insights into the mechanism of regulation of FDH1 expression at the molecular level.Communicated by C. P. Hollenberg  相似文献   

19.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

20.
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - MDH methanol dehydrogenase - ADH acohol dehydrogenase - PQQ pyrroloquinoline, quinone - DTT dithiothreitol - NBT nitrobluetetrazolium - PMS phenazine methosulphate - DCPIP dichlorophenol indophenol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号