首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

2.
Fatty acid embolism of the lung results in pulmonary edema. Isolated lung lobes ventilated and blood perfused at constant pressure were treated with 1 (n = 6) or 45 microliter/kg body wt (n = 6 oleic acid or saline (n = 7). Lobe weight increase linearly over 1-3 h following oleic with regression slopes indicating a more rapid rate of weight gain at the higher oleic acid dosage. Total lobe weight gain was greater in the 45 than in the 1 microliter/kg group (0.60 +/- 0.10 vs. 0.31 +/- 0.07 g/g initial lobe wt) and greater in the acid-treated lobes than in the controls (0.13 +/- 0.05 g/g initial lobe wt). Pulmonary vascular resistance increased 79% after 45 microliter/kg oleic acid but appeared unchanged following 1 microliter/kg oleic acid or saline. The decrease in arterial O2 partial pressure was greater in the 45 microliter/kg group than in the controls, 47 vs 22 Torr. High vascular pressures and increased flow velocities in patent vessels are not essential for oleic acid-associated edema, since weight increased at constant pressure perfusion. Weight gain related to oleic acid dosage suggests that oleic acid increases permeability by affecting the vascular endothelium either directly or through biochemical intermediates endogenous to the lung or blood.  相似文献   

3.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Simultaneous measures of vascular permeability to fluid (capillary filtration coefficient, Kf) and to plasma proteins (solvent drag reflection coefficient, sigma) were obtained over venous pressures (Pv) from 14 to 105 Torr in the isolated ventilated canine lung lobe (n = 70) pump perfused with autologous blood. The sigma was obtained from the relative increase in the concentration of plasma proteins vs. erythrocytes during fluid filtration. Kf's were obtained from two gravimetric methods as well as from change in hematocrit. All Kf's increased (P less than 0.05) as Pv was increased. However, sigma averaged 0.59 +/- 0.01 (range 0.54-0.67) and was unchanged (P greater than 0.05) by elevation of Pv over 20-105 Torr. In 44 lobes where all three Kf measures were obtained, gravimetric measures of Kf did not differ (P greater than 0.05) and were highly correlated with Kf obtained from hematocrit change, Vf Kf (P less than 0.001). However, both weight-based Kf's exceeded Vf Kf (P less than 0.05), suggesting that fluid filtration was overestimated by rate of lung weight gain or underestimated by hematocrit change. Increased permeability to water but not to protein over Pv from 20 to 105 Torr indicates that permeability to both can change independently and is counter to the theory that elevated vascular pressure "stretches" vascular pores.  相似文献   

5.
Circulating fatty acids are normally transported principally bound to serum albumin. We examined whether administering oleic acid (OA) in a concentrated albumin solution would attenuate its edemogenic potential in the isolated dog lung lobe perfused with a solution nearly depleted of blood cellular and protein components. The isolated ventilated lower left lobe (LLL) was perfused (7.3 +/- 0.6 ml X min-1 X g LLL-1) with a balanced salt solution containing 6% dextran and approximately 10% serum (vol/vol). Hourly weight gain, net LLL weight gain, and wet-to-dry weight ratio (W/D) were used as indices of extravascular lung fluid changes. Group I lobes (n = 5) were given saline, whereas both group II (n = 5) and III (n = 5) lobes were administered 1 microliter OA/kg body wt. The OA was incubated with 5 ml of albumin solution containing approximately 640 mg of bovine fatty acid-free albumin before infusion into group III lobes. Group I gained weight at rate of 10.8 +/- 0.5 g X h-1 X 100 g LLL-1 after saline, whereas group II exhibited a greater (P less than 0.005) rate of weight gain of 42 +/- 13 after OA. Group III weight gain of 8.4 +/- 0.5 g X h-1 X 100 g LLL-1 was not different (P greater than 0.05) from group I but was lower (P less than 0.005) than group II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The Starling fluid filtration coefficient (Kf) of blood-perfused excised goat lungs was examined before and after infusion of Escherichia coli endotoxin. Kf was calculated from rate of weight gain as described by Drake et al. [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. These calculations were made twice during base line and then at hourly intervals for 5 h after infusion of 5 mg (approximately 250 micrograms/kg) of E. coli endotoxin or after injection of oleic acid (47 microliter/kg). All lungs were perfused at constant arterial and venous pressure under zone 3 conditions. Base-line Kf averaged 27 +/- 10 and 20 +/- 4 (SD) microliter.min-1.cmH2O-1.g dry wt-1 for endotoxin and oleic acid groups, respectively. It was unchanged in the endotoxin group throughout the experiment but approximately doubled in the oleic acid lungs. Pulmonary arterial and venous pressures were not changed significantly during the course of these experiments in either group. Lung wet-to-dry weight ratios of these lungs were 5.6 +/- 0.6 and 6.1 +/- 0.5 ml/g for the endotoxin and oleic acid groups, respectively. This compares with 4.6 +/- 0.5 ml/g for normal, freshly excised but not perfused goat lungs. The small change in lung water and unchanged pulmonary pressures after both endotoxin and oleic acid suggest that lung injury was minimal. We conclude that 1) endotoxin does not cause a direct injury to the endothelium of isolated lungs during the first 5 h of perfusion, and 2) neutrophils are not sufficient to cause increased Kf after endotoxin infusion in this preparation.  相似文献   

7.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

8.
Arachidonic acid (AA) metabolites are known to be potent vasoactive substances in the pulmonary circulation, whereas their influence on lung vascular permeability is still uncertain. We investigated the effect of AA bolus injection on the capillary filtration coefficient (Kf,C) of isolated rabbit lungs, recirculatingly perfused with Krebs-Henseleit albumin (1%) buffer. Kf,C was measured using repetitive sudden venous pressure elevations (7.5 Torr) and time zero extrapolation of the slope of the weight gain curve. It ranged from 1.3 to 2.4 cm3 X s-1 X Torr-1 X g-1 X 10(-4) in control lungs. Pulmonary arterial injection of AA (100 microM; in presence of 20 microM indomethacin to suppress pulmonary arterial pressure rise) during an acute hydrostatic challenge, but not at zero venous pressure, caused a greater than 10-fold increase in Kf,C. Vascular compliance was not altered. Additional experiments, performed under zero-flow conditions to avoid any ambiguity in microvascular pressure, corroborated the severalfold increase in vascular permeability, detectable within 3 min after AA application during acute hydrostatic challenge.  相似文献   

9.
Three independent methods were used to estimate filtration coefficient (Kf) in isolated dog lungs perfused with low-hematocrit (Hct) blood. Pulmonary vascular pressure was increased by 12-23 cmH2O to induce fluid filtration. Average Kf (ml.min-1 x cmH2O-1 x 100 g dry wt-1) for six lungs was 0.26 +/- 0.05 (SE) with use of equations describing conservation of optically measured protein labeled with indocyanine green. Good agreement was found when a simplified version of the multiequation theory was applied to the data (0.24 +/- 0.05). Both optical estimates were lower than those predicted by constant slope (0.55 +/- 0.07) or extrapolation (1.20 +/- 0.15) techniques, which are based on changes in total lung weight. Subsequent studies in five dog lungs investigated whether the higher Kf from weight analyses could be caused by prolonged pulmonary vascular filling. We found that 51Cr-labeled red blood cells (RBCs), monitored over the lung, continued to accumulate for 30 min after vascular pressure elevations of 9-16 cmH2O.Kf was determined by subtracting computed vascular filling from total weight change (0.28 +/- 0.06) and by perfusate Hct changes determined from radiolabeled RBCs (0.23 +/- 0.04). These values were similar to those obtained from analysis of optical data with the complete model (0.30 +/- 0.06), the simplified version (0.26 +/- 0.05), and from optically determined perfusate Hct (0.16 +/- 0.03). However, constant slope (0.47 +/- 0.04) and extrapolation (0.57 +/- 0.07) computations of Kf were higher than estimates from the other methods. Our studies indicate that prolonged blood volume changes may accompany vascular pressure elevations and produce overestimates of Kf with standard weight measurement techniques. However, Kf computed from optical measurements is independent of pulmonary blood volume changes.  相似文献   

10.
To determine whether the accelerated rate of lobe weight gain during severe pulmonary edema is attributed to increased permeability of the microvascular barrier or a loss of tissue forces opposing filtration, the effect of edema on capillary filtration coefficient (Kf,C), interstitial compliance (Ci), and the volume of fluid filtered after a step increase in microvascular pressure (delta Vi) were determined in eight isolated left lower lobes of dog lungs perfused at 37 degrees C with autologous blood. After attaining a base-line isogravimetric state, the capillary pressure (Pc) was increased in successive steps of 2, 5, and 10 cmH2O. This sequence of vascular pressure increases was repeated three times. Edema accumulation was expressed as weight gained as a percent of initial lobe weight (% delta Wt), and Kf,C was measured by time 0 extrapolation of the weight gain curve. An exponential rate constant for the decrease in the rate of weight gain with time (K) was calculated for each curve. Ci was then calculated by assuming that the capillary wall and interstitium constitute a resistance-capacitance network. Kf,C was not increased by edema formation in any group. Between mild (% delta Wt less than 30%) and severe edema states (% delta Wt greater than 50%) respective mean Ci increased significantly from 3.54 to 9.12 ml.cmH2O-1.100 g-1, K decreased from 0.089 to 0.036 min-1, and delta Vi increased from 1.28 to 2.4 ml.cmH2O-1.100 g-1. The delta Vi during each Pc increase was highly correlated with Kf,C and Ci when used together as independent variables (r = 0.99) but less well correlated when used separately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

12.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effect of edema on the relationship between rate of fluid filtration and vascular pressure was studied in ventilated isolated dog lung lobes blood-perfused at constant flow. Constant rate of lobe weight gain (S), representing transvascular fluid flux, was obtained at different venous pressures (Pv) as Pv was increased stepwise from 2 to 40 and then similarly decreased from 40 to 2 Torr (n = 6). In another group (n = 6), edema was maximized by reversing the sequence of Pv change; S was obtained during similar Pv steps as Pv was decreased from 40 to 2 and then returned to 40 Torr. In both groups, delta S was disproportionately greater for delta Pv at higher Pv's, with S vs. Pv fit by an exponential curve (P less than 0.001). The exponential relationship was independent of lung hydration inasmuch as greater edema on the second limb of Pv change did not alter the curve (P greater than 0.05). At 144% weight gain, interstitial compliance was 55.5 +/- 26.8 ml.100 g-1.Torr-1 (n = 10). Interstitial pressure reportedly remains constant, i.e., fails to increase to further buffer fluid filtration, after transition of the lung interstitium from low to high compliance at approximately 40% lung weight gain. If so, then the exponential S vs. Pv relationship observed in the present study at elevated interstitial compliance does not appear related to tissue pressure-buffering effects.  相似文献   

14.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

15.
Transvascular fluid flux was induced in six isolated blood-perfused canine lobes by increasing and decreasing hydrostatic inflow pressure (Pi). Fluid flux was followed against the change in concentration of an impermeable tracer (Blue Dextran) measured directly with a colorimetric device. The time course of fluid flux was biphasic with an initial fast transient followed by a slow phase. Hematocrit changes unrelated to fluid flux occurred due to the Fahraeus effect, and their contribution to the total color signal was subtracted to determine the rate of fast fluid flux (Qf). Qf was related to Pi to derive fast-phase conductance (Kf). Slow-phase Kf was calculated from the constant rate of change of lobe weight. For a mean change in Pi of 7 cmH2O, 40% of the color signal was due to fluid flux. Fast- and slow-phase Kf's were 0.86 +/- 0.15 and 0.27 +/- 0.05 ml X min-1. cmH2O-1 X 100 g dry wt-1. The fast-phase Kf is smaller than that reported for plasma-perfused lobes. Possible explanations discussed are the nature of the perfusate, the mechanical properties of the interstitium, and the slow rate of rise of the driving pressure at the filtration site on the basis of a distributed model of pulmonary vascular compliance.  相似文献   

16.
Factors affecting perfusion distribution in oleic acid pulmonary edema were examined in 28 anesthetized open-chest dogs. Sixteen had unilobar oleic acid edema produced by left lower lobe pulmonary artery infusion of 0.03 ml/kg of oleic acid, and 12 had the same amount of edema produced by left lower lobe endobronchial instillation of hypotonic plasma. Lobar perfusion (determined from flow probes) and lobar shunt (determined from mixed venous and lobar venous blood) were measured at base line, 1.5 h after edema, and 10 min after 10 cmH2O positive end-expiratory pressure (PEEP). Fourteen dogs (8 oleic acid, 6 plasma) received sodium nitroprusside (11.72 +/- 7.10 micrograms X kg-1 X min-1). Total and lobar shunts increased to the same extent in all animals. Lobar perfusion decreased by 49.8 +/- 4.8% without nitroprusside and 34.0 +/- 3.6% with nitroprusside in the oleic acid group, corresponding values being 40.3 +/- 0.8% and 26.4 +/- 1.7% in the hypotonic plasma group. PEEP returned perfusion and shunt to base line. In oleic acid edema, most of the decreased perfusion results from mechanical effects of the edema, a smaller fraction results from other vascular effects of the oleic acid, and approximately 30% is reversible by nitroprusside. PEEP normalizes the perfusion distribution.  相似文献   

17.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

18.
Effect of dehydration on interstitial pressures in the isolated dog lung   总被引:1,自引:0,他引:1  
We have determined the effect of dehydration on regional lung interstitial pressures. We stopped blood flow in the isolated blood-perfused lobe of dog lung at vascular pressure of approximately 4 cmH2O. Then we recorded interstitial pressures by micropuncture at alveolar junctions (Pjct), in perimicrovascular adventitia (Padv), and at the hilum (Phil). After base-line measurements, we ventilated the lobes with dry gas to decrease extravascular lung water content by 14 +/- 5%. In one group (n = 10), at constant inflation pressure of 7 cmH2O, Pjct was 0.2 +/- 0.8 and Padv was -1.5 +/- 0.6 cmH2O. After dehydration the pressures fell to -5.0 +/- 1.0 and -5.3 +/- 1.3 cmH2O, respectively (P less than 0.01), and the junction-to-advential gradient (Pjct-Padv) was abolished. In a second group (n = 6) a combination of dehydration and lung expansion with inflation pressure of 15 cmH2O further decreased Pjct and Padv to -7.3 +/- 0.7 and -7.1 +/- 0.7 cmH2O, respectively. Phil followed changes in Padv. Interstitial compliance was 0.6 at the junctions, 0.8 in adventitia, and 0.9 ml.cmH2O-1.100 g-1 wet lung at the hilum. We conclude, that perialveolar interstitial pressures may provide an important mechanism for prevention of lung dehydration.  相似文献   

19.
We evaluated the importance of hypoxic vasoconstriction as a mechanism for pulmonary blood flow reduction during unilobar oleic acid lung injury in dogs. Pulmonary blood flow (PBF) and lung water were measured with positron emission tomography. Data from the injured left (LCL) and right (RCL) caudal lobes were compared in 23 dogs. Six dogs were used to demonstrate that endotoxin (15 micrograms/kg) prevents changes in regional PBF during selective hypoxic ventilation of the LCL. In 17 dogs, oleic acid (OA, 0.015 ml/kg) was injected into the LCL through a balloon-wedged pulmonary arterial catheter. Five dogs received OA only (control group), eight received endotoxin (15 mcg/kg) before OA was administered (endotoxin group), and four were treated with prostaglandin E1 (PGE1) after OA (PGE1 group). The base-line left-to-right PBF ratio (LCL/RCL PBF) was 1.01 +/- 0.11 (SD) for the control group and 1.07 +/- 0.16 for the PGE1 group. One minute after OA, LCL/RCL PBF feel significantly (0.32 +/- 0.15 and 0.32 +/- 0.13 for the control and PGE1 groups, respectively) before any significant increase in lung water was detected. In all 17 dogs that received OA, the LCL/RCL PBF remained severely reduced 60 min after OA compared with base-line values (0.41 +/- 0.15, 0.49 +/- 0.06, and 0.26 +/- 0.13 for the control, PGF1, and endotoxin groups, respectively) despite treatment with endotoxin or PGE1. Lung water measurements obtained 60 min after OA increased significantly (P less than 0.05) in the injured lobe (LCL) but not in the normal lobe (RCL) in all dog groups, whereas PBF to the LCL remained significantly reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To determine how liquid accumulation affects extra-alveolar perimicrovascular interstitial pressure, we measured filtration rate under zone 1 conditions (25 cmH2O alveolar pressure, 20 or 10 cmH2O vascular pressure) in isolated dog lung lobes in which all vessels were filled with autologous plasma. In the base-line condition, starting with normal extra-alveolar water content, filtration rate decreased by about one-half over 1 h as edema liquid slowly accumulated. We repeated each experiment after inducing edema (up to 100% lung weight gain). The absolute values and time course of filtration in the edema condition did not differ from base-line, i.e., the edema did not affect the time course of filtration. To compute the maximal initial and maximal change in extra-alveolar perimicrovascular pressure that occurred over each 1-h filtration study, we first assumed that the reflection coefficient is 0 in the Starling equation, then calculated perimicrovascular pressure and filtration coefficient from two equations with two unknowns. The mean filtration coefficient in 10 lobes is 0.063 g/(min X cmH2O X 100 g wet wt), and the initial perimicrovascular pressure is 3.9 cmH2O, rising by 4-7 cmH2O at 1 h. Finally we tested low protein perfusates and found the filtration rate was higher. We calculated an overall reflection coefficient = 0.44, a decrease in the initial perimicrovascular pressure to 1.9 cmH2O and a slightly lower increase after 1 h of edema formation, 2.2-6.6 cmH2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号