首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant aspartic proteinases: enzymes on the way to a function   总被引:7,自引:0,他引:7  
Plant aspartic proteinases have been characterized from seeds, flowers and leaves of a number of different species. The enzymes are generally either monomeric or heterodimeric, containing two peptides processed from the same precursor protein. The plant enzymes, like their mammalian and microbial counterparts, are active at acidic pH and inhibited by a class specific inhibitor pepstatin A. Plant aspartic proteinases are generally either secreted or targeted to the vacuolar/protein storage body compartment. The primary sequences of many of these enzymes have been determined and are very homologous with each other as well as with enzymes from mammalian and microbial origins. Plant aspartic proteinases, however, have a very unique plant specific region, which is not found in mammalian, microbial, or viral aspartic proteinases. The function of this region has not been elucidated. A role for these plant enzymes in protein processing or degradation has been proposed, however, more studies are required to confirm their in vivo functions. Recent intriguing results suggest possible roles for these enzymes in programmed cell-death of tissues and in pathogen resistance.  相似文献   

2.
Structure and function of plant aspartic proteinases.   总被引:6,自引:0,他引:6  
Aspartic proteinases of the A1 family are widely distributed among plant species and have been purified from a variety of tissues. They are most active at acidic pH, are specifically inhibited by pepstatin A and contain two aspartic residues indispensible for catalytic activity. The three-dimensional structure of two plant aspartic proteinases has been determined, sharing significant structural similarity with other known structures of mammalian aspartic proteinases. With a few exceptions, the majority of plant aspartic proteinases identified so far are synthesized with a prepro-domain and subsequently converted to mature two-chain enzymes. A characteristic feature of the majority of plant aspartic proteinase precursors is the presence of an extra protein domain of about 100 amino acids known as the plant-specific insert, which is highly similar both in sequence and structure to saposin-like proteins. This insert is usually removed during processing and is absent from the mature form of the enzyme. Its functions are still unclear but a role in the vacuolar targeting of the precursors has been proposed. The biological role of plant aspartic proteinases is also not completely established. Nevertheless, their involvement in protein processing or degradation under different conditions and in different stages of plant development suggests some functional specialization. Based on the recent findings on the diversity of A1 family members in Arabidopsis thaliana, new questions concerning novel structure-function relationships among plant aspartic proteinases are now starting to be addressed.  相似文献   

3.
BackgroundCytosolic 5′-nucleotidase II (cN-II) and ecto-5′-nucleotidase (CD73) are enzymes involved in the nucleotide metabolism by dephosphorylating nucleoside monophosphates. Both enzymes are involved in cancer by modifying anticancer drug activity, cancer cell biology and immune modulation.MethodsWe have modified lung cancer cells (NCI-H292) to become deficient for either or both enzymes using the CRISPR/Cas9 technique, and studied the implication of the two enzymes in the cellular response to different stress condition i.e. chemotherapeutic agents, hypoxia and nucleotide stress.ResultsOur results show that there is no significant role of these enzymes in cell proliferation under hypoxic stress. Similarly, cN-II and CD73 are not involved in wound healing ability under CoCl2-mediated HIF-1α stabilization. Furthermore, our results show that CD73-deficiency is associated with increased apoptosis in response to 1600 μM adenosine, decreased sensitivity to mitomycin and enhanced sensitivity to vincristine. cN-II deficiency increased in vivo tumor growth and sensitivity to vincristine and mitomycin C.ConclusionsOur study gives new insights into the biological roles of cN-II and CD73 under stress conditions in this particular cancer cell line. Further experiments will help deciphering the molecular mechanisms underlying the observed differences.  相似文献   

4.
Immobilized patients, diabetics, and the elderly suffer from impaired wound healing. The 43-amino acid angiogenic peptide thymosin beta4 (Tbeta4) has previously been found to accelerate dermal wound repair in rats, aged mice, and db/db diabetic mice. It also promotes corneal repair in both normal rats and mice. Because proteinases are important in wound repair, we hypothesized that Tbeta4 may regulate matrix metalloproteinase (MMP) expression in cells that are involved in wound repair. Analysis by RT-PCR of whole excised mouse dermal wounds on days 1, 2, and 3 after wounding showed that Tbeta4 increased several metalloproteinases, including MMP-2 and -9 expression by several-fold over control on day 2 after wounding. We further analyzed the metalloproteinases secreted in response to exogenous Tbeta4 by cells normally present in the wound. Western blot analysis of cultured keratinocytes, endothelial cells, and fibroblasts that were treated with increasing concentrations of Tbeta4 showed increases in the levels of MMP-1, -2, and -9 in a cell-specific manner. Tbeta4 also enhanced the secretion of MMP-1 and MMP-9 by activated monocytes. The central actin-binding domain, amino acids 17-23, had all of the activity for metalloproteinase induction. We conclude that part of the wound healing activity of Tbeta4 resides in its ability to increase proteinase activity via its central actin-binding domain. Thus, Tbeta4 may play a pivotal role in extracellular matrix remodeling during wound repair.  相似文献   

5.
Sugar acts as a signal molecule and plays a pivotal role in plant development and stress response. Neutral/alkaline invertases found only in photosynthetic bacteria and plants is sucrose-specific enzymes cleave sucrose into glucose and fructose. We have identified a gene for neutral/alkaline invertase in Arabidopsis designated as AtCYT-INV1 which is involved in sugar/ABA signaling and plays multiple roles in plant development and osmotic stress-induced inhibition on lateral root growth.Key Words: Arabidopsis thaliana, AtCTY-INV1, sugar signaling  相似文献   

6.
Wound healing in mammals can take several weeks to months and the process is always accompanied by scar formation. Wound healing mechanisms that mimic regeneration are not found in most mature mammalian tissues. However, the MRL/MPJ (MRL) mouse has the unique capacity to regenerate ear hole wound completely in less than a month. To identify genes involved in wound healing without a scar, we chose to use restriction fragment differential display-PCR to isolate genes differentially expressed in the MRL (good healer) mouse and the C57BL/6 (poor healer) mouse at different stages of wound healing. We identified 36 genes that were differentially expressed in the regenerating tissue of good and poor healer strains of which several genes are also genetically linked to wound healing and thus are potential candidate genes for scarless wound healing.  相似文献   

7.
VL30 elements are a multigene family within the class of retroviruses and retrotransposons. We have characterized the response of normal rat fibroblasts to anoxia, in which endogenous VL30 element expression is strongly induced. Optimal induction up to 500-fold occurs under complete anoxia, although a lesser response is seen under atmospheres up to 2% oxygen. Phorbol esters and diacylglycerol, which induce mouse VL30 RNA approximately eightfold, show no effect on the rat VL30 system. The hypoxic conditions optimal for rat VL30 induction represent a mild cellular stress, with no reduction in cell viability during the induction period. Although the precise physiological role of this fibroblast response to temporary anoxia is unknown, it may occur during wound healing. The induction of VL30 by anoxia provides a unique model system wherein a member of the mammalian retrovirus/retrotransposon family is highly responsive to a common physiological signal.  相似文献   

8.
Multifunctional role of plant cysteine proteinases   总被引:15,自引:0,他引:15  
Cysteine proteinases also referred to as thiol proteases play an essential role in plant growth and development but also in senescence and programmed cell death, in accumulation of storage proteins such as in seeds, but also in storage protein mobilization. Thus, they participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. In this review an attempt was undertaken to illustrate these multiple roles of cysteine proteinases and the mechanisms underlying their action.  相似文献   

9.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

10.
The role of plant hormones during grafting   总被引:1,自引:0,他引:1  
For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.  相似文献   

11.
Different forms of participation of proteolytic enzymes in pathogenesis and plant defense are reviewed. Together with extracellular proteinases, phytopathogenic microorganisms produce specific effectors with proteolytic activity and are able to act on proteins inside the plant cell. In turn, plants use both extracellular and intracellular proteinases for defense against phytopathogenic microorganisms. Among the latter, a special role belongs to vacuolar processing enzymes (legumains), which perform the function of caspases in the plant cell.  相似文献   

12.
Cysteine proteases in nodulation and nitrogen fixation   总被引:3,自引:0,他引:3  
The cysteine proteinases or cysteine endopeptidases (EC 3.4.22) are known to occur widely in plant cells. They are involved in almost all aspects of plant growth and development including germination, circadian rhythms, senescence and programmed cell death. They are also involved in mediating plant cell responses to environmental stress (such as water stress, salinity, low temperature, wounding, ethylene, and oxidative conditions) and plant-microbe interactions (including nodulation). In the development and function of legume root nodules, cysteine proteases could be involved in several important processes:-(i) a defence response to root invasion by microorganisms; (ii) protein turnover required during the formation of new tissue; (iii) cellular homeostasis and metabolism; (iv) adaptation of host cells to physiological stresses; (v) control of nodule senescence. Because of their central importance to plant physiology, cysteine proteases could serve as important targets for the study of nodule development and functioning at the molecular level. Because of their widespread occurrence in nodulating plants they could also serve as candidate genes for targeted plant breeding programmes.  相似文献   

13.
Involvement of polyamine oxidase in wound healing   总被引:3,自引:1,他引:2  
Hydrogen peroxide (H(2)O(2)) is involved in plant defense responses that follow mechanical damage, such as those that occur during herbivore or insect attacks, as well as pathogen attack. H(2)O(2) accumulation is induced during wound healing processes as well as by treatment with the wound signal jasmonic acid. Plant polyamine oxidases (PAOs) are H(2)O(2) producing enzymes supposedly involved in cell wall differentiation processes and defense responses. Maize (Zea mays) PAO (ZmPAO) is a developmentally regulated flavoprotein abundant in primary and secondary cell walls of several tissues. In this study, we investigated the effect of wounding on ZmPAO gene expression in the outer tissues of the maize mesocotyl and provide evidence that ZmPAO enzyme activity, protein, and mRNA levels increased in response to wounding as well as jasmonic acid treatment. Histochemically detected ZmPAO activity especially intensified in the epidermis and in the wound periderm, suggesting a tissue-specific involvement of ZmPAO in wound healing. The role played by ZmPAO-derived H(2)O(2) production in peroxidase-mediated wall stiffening events was further investigated by exploiting the in vivo use of N-prenylagmatine (G3), a selective and powerful ZmPAO inhibitor, representing a reliable diagnostic tool in discriminating ZmPAO-mediated H(2)O(2) production from that generated by peroxidase, oxalate oxidase, or by NADPH oxidase activity. Here, we demonstrate that G3 inhibits wound-induced H(2)O(2) production and strongly reduces lignin and suberin polyphenolic domain deposition along the wound, while it is ineffective in inhibiting the deposition of suberin aliphatic domain. Moreover, ZmPAO ectopic expression in the cell wall of transgenic tobacco (Nicotiana tabacum) plants strongly enhanced lignosuberization along the wound periderm, providing evidence for a causal relationship between PAO and peroxidase-mediated events during wound healing.  相似文献   

14.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

15.
Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants have been reported to improve wound healing in animal models and human subjects. Uric acid (UA) is an efficient free radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA or 1, 7 dimethyl-UA) modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA significantly accelerates the wound healing process when applied topically (once daily) to full-thickness wounds in mice. Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions.  相似文献   

16.
Chronic injury often triggers maladaptive wound healing responses leading to the development of tissue fibrosis and subsequent organ malfunction. Inflammation is a key component of the wound healing process and promotes the development of organ fibrosis. Here, we review the contribution of Toll-like receptors (TLRs) to wound healing with a particular focus on their role in liver, lung, kidney, skin and myocardial fibrosis. We discuss the role of TLRs on distinct cell populations that participate in the repair process following tissue injury, and the contribution of exogenous and endogenous TLR ligands to the wound healing response. Systemic review of the literature shows that TLRs promote tissue repair and fibrosis in many settings, albeit with profound differences between organs. In particular, TLRs exert a pronounced effect on fibrosis in organs with higher exposure to bacterial TLR ligands, such as the liver. Targeting TLR signaling at the ligand or receptor level may represent a novel strategy for the prevention of maladaptive wound healing and fibrosis in chronically injured organs. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

17.
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO‐1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO‐2 deficient mice is impaired with exorbitant inflammation and absence of HO‐1 expression. This study addresses the role of HO‐2 in cutaneous excisional wound healing using HO‐2 knockout (KO) mice. Here, we show that HO‐2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO‐2 KO mice compared to WT controls. Surprisingly, wound closure in HO‐2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO‐1 induction in HO‐2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C‐X‐C) ligand‐11 (CXCL‐11) in wounds of HO‐2 KO mice. Abnormal regulation of CXCL‐11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL‐11 expression in HO‐2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.  相似文献   

18.
The cell wall plays a key role in controlling the size and shape of the plant cell during plant development and in the interactions of the plant with its environment. The cell wall structure is complex and contains various components such as polysaccharides, lignin and proteins whose composition and concentration change during plant development and growth. Many studies have revealed changes in cell walls which occur during cell division, expansion, and differentiation and in response to environmental stresses; i.e. pathogens or mechanical stress. Although many proteins and enzymes are necessary for the control of cell wall organization, little information is available concerning them. An important advance was made recently concerning cell wall organization as plant enzymes that belong to the superfamily of glycoside hydrolases and transglycosidases were identified and characterized; these enzymes are involved in the degradation of cell wall polysaccharides. Glycoside hydrolases have been characterized using molecular, genetic and biochemical approaches. Many genes encoding these enzymes have been identified and functional analysis of some of them has been performed. This review summarizes our current knowledge about plant glycoside hydrolases that participate in the degradation and reorganisation of cell wall polysaccharides in plants focussing particularly on those from Arabidopsis thaliana.  相似文献   

19.
Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone [1]. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.  相似文献   

20.
Directed cell migration is critical for normal development, immune responses, and wound healing and plays a prominent role in tumor metastasis. In eukaryotes, cell orientation is biased by an external chemoattractant gradient through a spatial contrast in chemoattractant receptor-mediated signal transduction processes that differentially affect cytoskeletal dynamics at the cell front and rear. Mechanisms of spatial gradient sensing and chemotaxis have been studied extensively in the social amoeba Dictyostelium discoideum and mammalian leukocytes (neutrophils), which are similar in their remarkable sensitivity to shallow gradients and robustness of response over a broad range of chemoattractant concentration. Recently, we have quantitatively characterized a different gradient sensing system, that of platelet-derived growth factor-stimulated fibroblasts, an important component of dermal wound healing. The marked differences between this system and the others have led us to speculate on the diversity of gradient sensing mechanisms and their biological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号