首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we investigated the structure-activity relationship of major green tea catechins and their corresponding epimers on cell-surface binding and inhibitory effect on histamine release. Galloylated catechins; (−)-epigallocatechin-3-O-gallate (EGCG), (−)-gallocatechin-3-O-gallate (GCG), (−)-epicatechin-3-O-gallate (ECG), and (−)-catechin-3-O-gallate (CG) showed the cell-surface binding to the human basophilic KU812 cells by surface plasmon resonance analysis, but their non-galloylated forms did not. Binding activities of pyrogallol-type catechins (EGCG and GCG) were higher than those of catechol-type catechins (ECG and CG). These patterns were also observed in their inhibitory effects on histamine release. Previously, we have reported that biological activities of EGCG are mediated through the binding to the cell-surface 67 kDa laminin receptor (67LR). Downregulation of 67LR expression caused a reduction of both activities of galloylated catechins. These results suggest that both the galloyl moiety and the B-ring hydroxylation pattern contribute to the exertion of biological activities of tea catechins and their 67LR-dependencies.  相似文献   

2.
In this study, we investigated the relationship between the stability of catechins and their electrophilic reactivity with proteins. The stability of catechins was evaluated by HPLC analysis. Catechol-type catechins were stable in a neutral buffer, but pyrogallol-type catechins, such as (-)-epigallocatechin gallate (EGCg), were unstable. The electrophilic reactivity of catechins with thiol groups in a model peptide and a protein was confirmed by both mass spectrometry and electrophoresis/blotting with redox-cycling staining. In a comparison of several catechins, pyrogallol-type catechins had higher reactivity with protein thiols than catechol-type catechins. The instability and reactivity of EGCg were enhanced in an alkaline pH buffer. The reactivity of EGCg was reduced by antioxidants due to their ability to prevent EGCg autoxidation. These results indicate that the instability against oxidation of catechins is profoundly related to their electrophilic reactivity. Consequently, the difference in these properties of tea catechins can contribute to the magnitude of their biological activities.  相似文献   

3.
Eikenella corrodens is a periodontopathogenic bacterium that forms biofilm even by itself. In this study, we investigated the inhibitory effects of catechins on E. corrodens biofilm formation. Biofilm formation was inhibited by the addition of 1 mM of the catechins with the pyrogallol-type B-ring and/or the galloyl group. The catechins with the galloyl group were effective at smaller doses than those with only the pyrogallol-type B-ring. An inhibitory effect was observed even when these catechins and gallic acid were added at sub-minimal inhibitory concentration (MIC) or at concentrations that showed no bactericidal effect. These results suggest that some catechins at sub-MIC might inhibit biofilm formation. No inhibitory effect of catechins at sub-MIC on biofilm formation was observed in the luxS deletion mutant. Our studies suggest that some species of catechins with the galloyl group affect autoinducer 2-mediated quorum sensing and thereby inhibit biofilm formation by E. corrodens.  相似文献   

4.
The inhibitory activities against DNA polymerases (pols) of catechin derivatives (i.e., flavan-3-ols) such as (+)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (+)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, and (-)-epigallocatechin gallate (EGCg) were investigated. Among the eight catechins, some catechins inhibited mammalian pols, with EGCg being the strongest inhibitor of pol alpha and lambda with IC(50) values of 5.1 and 3.8 microM, respectively. EGCg did not influence the activities of plant (cauliflower) pol alpha and beta or prokaryotic pols, and further had no effect on the activities of DNA metabolic enzymes such as calf terminal deoxynucleotidyl transferase, T7 RNA polymerase, and bovine deoxyribonuclease I. EGCg-induced inhibition of pol alpha and lambda was competitive with respect to the DNA template-primer and non-competitive with respect to the dNTP (2'-deoxyribonucleotide 5'-triphosphate) substrate. Tea catechins also suppressed TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, and the tendency of the pol inhibitory activity was the same as that of anti-inflammation. EGCg at 250 microg was the strongest suppressor of inflammation (65.6% inhibition) among the compounds tested. The relationship between the structure of tea catechins and the inhibition of mammalian pols and inflammation was discussed.  相似文献   

5.
Catechins have a broad range of physiological functions and act as the main taste ingredient of green tea. Although catechins show a strong bitterness, the bitter taste receptor for catechins has not been fully understood. The objective of this study was to identify the receptor for the major green tea catechins such as (−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), and (−)-epigallocatechin gallate (EGCg). By the cell-based assay using cultured cells expressing human bitter taste receptor, a clear response of hTAS2R39-expressing cells was observed to 300 μM of either ECg or EGCg, which elicit a strong bitterness in humans. The response of hTAS2R39-expressing cells to ECg was the strongest among the tested catechins, followed by EGCg. Because the cellular response to EC and EGC is much weaker than those of ECg and EGCg, galloyl groups was strongly supposed to be involved in the bitter intensity. This finding is similar to the observations of taste intensity obtained from a human sensory study. Our results suggest the participation of hTAS2R39 in the detection of catechins in humans, indicating the possibility that bitterness of tea catechins can be evaluated by using cells expressing hTAS2R39.  相似文献   

6.
Green tea catechins as a BACE1 (beta-secretase) inhibitor   总被引:1,自引:0,他引:1  
In the course of searching for BACE1 (beta-secretase) inhibitors from natural products, the ethyl acetate soluble fraction of green tea, which was suspected to be rich in catechin content, showed potent inhibitory activity. (-)-Epigallocatechin gallate, (-)-epicatechin gallate, and (-)-gallocatechin gallate were isolated with IC(50) values of 1.6 x 10(-6), 4.5 x 10(-6), and 1.8 x 10(-6) M, respectively. Seven additional authentic catechins were tested for a fundamental structure-activity relationship. (-)-Catechin gallate, (-)-gallocatechin, and (-)-epigallocatechin significantly inhibited BACE1 activity with IC(50) values of 6.0 x 10(-6), 2.5 x 10(-6), and 2.4 x 10(-6) M, respectively. However, (+)-catechin, (-)-catechin, (+)-epicatechin, and (-)-epicatechin exhibited about ten times less inhibitory activity. The stronger activity seemed to be related to the pyrogallol moiety on C-2 and/or C-3 of catechin skeleton, while the stereochemistry of C-2 and C-3 did not have an effect on the inhibitory activity. The active catechins inhibited BACE1 activity in a non-competitive manner with a substrate in Dixon plots.  相似文献   

7.
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.  相似文献   

8.
Yan-Hong Wang 《Phytochemistry》2010,71(16):1825-1831
Several lines of evidence indicate that (+)-δ-cadinene-8-hydroxylase (CYP706B1) plays an important role in biosynthesis of gossypol in Gossypium arboreum L. ( [Luo et al., 2001] and [Wang et al., 2003]). The catalytically active enzyme has been expressed in yeast microsomes. Some microsomal preparations conjugated the hydroxylated (+)-δ-cadinene to a moiety that has not yet been identified. However, when microsomes were treated with n-octyl-β-d-glucoside (OG), a non-ionic detergent, (+)-δ-cadinene was reproducibly converted to the free alcohol, 8-hydroxy-(+)-δ-cadinene. OG had little effect on Km and slightly stimulated apparent Vmax. Enzymic activity was more than 10-fold more sensitive to inhibition by the N-substituted imidazole clotrimazole than to miconazole. Sesquiterpene olefins (−)-δ-cadinene, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and a mixture of (−)- and (+)-α-copaene were inhibitory to hydroxylation of (+)-δ-cadinene. In addition, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and, to a smaller extent, (−)-δ-cadinene served as alternative substrates for (+)-δ-cadinene-8-hydroxylase and were converted to mono-hydroxylated products. Of the five olefins tested, α-humulene and α-copaene are found in lysigenous glands of cotton (Elzen et al., 1985), which are also the site of gossypol accumulation ( [Bell et al., 1978] and [Mace et al., 1976]) and the probable site of its biosynthesis.  相似文献   

9.
Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis.  相似文献   

10.
The most efficient steaming conditions below 200 °C for extracting antioxidants from used tea leaves and their reaction behavior during the steaming treatment were investigated. The antioxidative activity of the steamed extracts increased with increasing steaming temperature, and the yield of the ethyl acetate extract fraction from each steamed extract showing the greatest antioxidative activity also increased. Caffeine, (?)-catechin, (?)-epicatechin, (?)-gallocatechin, (?)-epigallocatechin, (?)-catechin gallate, (?)-epicatechin gallate, (?)-gallocatechin gallate, (?)-epigallocatechin gallate and gallic acid were identified from the ethyl acetate extract fraction. Quantitative analyses demonstrated that the catechins with a 2,3-cis configuration decreased with increasing steaming temperature, whereas the corresponding epimers at the C-2 position increased. Each pair of epimers showed similar antioxidative activity to each other, indicating that the epimerization reaction did not contribute to the improved antioxidative activity. It is concluded from these results that the improvement in antioxidative activity at higher steaming temperatures was due to the increased yield of catechins and other antioxidants.  相似文献   

11.
The purpose of this study is to examine the relationship between the free radical scavenging activities and the chemical structures of tea catechins ((-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC)) and their corresponding epimers ((-)-gallocatechin gallate (GCG), (-)-gallocatechin (GC) and (+)-catechin ((+)-C)). With electron spin resonance (ESR) we investigated their scavenging effects on superoxide anions (O-.2) generated in the irradiated riboflavin system, singlet oxygen(1O2) generated in the photoradiation-hemoporphyrin system, the free radicals generated from 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. The results showed that the scavenging effects of galloylated catechins (EGCG and GCG) on the four free radicals were stronger than those of nongalloylated catechins (EGC, GC, EC, (+)-C), and the scavenging effects of EGC and GC were stronger than those of EC and (+)-C. Thus, it is suggested that the presence of the gallate group at the 3 position plays the most important role in their free radical-scavenging abilities and an additional insertion of the hydroxyl group at the 5' position in the B ring also contributes to their scavenging activities. Moreover, the corresponding phenoxyl radicals formed after the reaction with O-.2 were trapped by DMPO and the ESR spectra of DMPO/phenoxyl radical adducts were observed (aN=15.6 G and aHbeta=21.5 G). No significant differences were found between the scavenging effects of the catechins and their epimers when their concentrations were high. However, significant differences were observed at relatively low concentrations, and the lower their concentrations, the higher the differences. The scavenging abilities of GCG, GC and (+)-C were stronger than those of their corresponding epimers (EGCG, EGC and EC). The differences between their sterical structures played a more important role in their abilities to scavenge large free radicals, such as the free radicals generated from AAPH and the DPPH radical, than to scavenge small free radicals, such as O-.2 and 1O2, especially in the case with EGCG and GCG with more bulky steric hindrance.  相似文献   

12.
Tea catechins, rich in (-)-epigallocatechin gallate and (-)-epicatechin gallate, or heat-treated tea catechins in which about 50% of the (-)-epigallocatechin gallate and (-)-epicatechin gallate in tea catechins was epimerized to (-)-gallocatechin gallate and (-)-catechin gallate, were fed to rats at 1% level for 23 d. Visceral fat deposition and the concentration of hepatic triacylglycerol were significantly lower in the tea catechin and heat-treated tea catechin groups than in the control group. The activities of fatty acid synthase and the malic enzyme in the liver cytosol were significantly lower in the two catechin groups than in the control group. In contrast, the activities of carnitine palmitoyltransferase and acyl-CoA oxidase in the liver homogenate were not significantly different among the three groups. These results suggest that the reduction in activities of enzymes related to hepatic fatty acid synthesis by the feeding of tea catechins or heat-treated tea catechins can cause reductions of hepatic triacylglycerol and possibly of visceral fat deposition.  相似文献   

13.
Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5 mM dopachrome the oxygen consumption rate of TrT on 8 mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone.  相似文献   

14.
The most efficient steaming conditions below 200 degrees C for extracting antioxidants from used tea leaves and their reaction behavior during the steaming treatment were investigated. The antioxidative activity of the steamed extracts increased with increasing steaming temperature, and the yield of the ethyl acetate extract fraction from each steamed extract showing the greatest antioxidative activity also increased. Caffeine, (-)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, (-)-epigallocatechin gallate and gallic acid were identified from the ethyl acetate extract fraction. Quantitative analyses demonstrated that the catechins with a 2,3-cis configuration decreased with increasing steaming temperature, whereas the corresponding epimers at the C-2 position increased. Each pair of epimers showed similar antioxidative activity to each other, indicating that the epimerization reaction did not contribute to the improved antioxidative activity. It is concluded from these results that the improvement in antioxidative activity at higher steaming temperatures was due to the increased yield of catechins and other antioxidants.  相似文献   

15.
Although plant polyphenols such as (−)-epigallocatechin gallate (EGCG) have antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), such polyphenols are unstable in solution. Because the instability of polyphenols is attributable to their oxidation, we examined the effects of antioxidants and inhibitors of polyphenol oxidation on the maintenance of polyphenol antibacterial activity. The antibacterial activity of EGCG was enhanced in the presence of ascorbic acid, and ascorbic acid was the most effective for retaining the concentration of stable EGCG. On the other hand, the antibacterial activity of EGCG was lowered in the presence of casein in spite of its suppressing effect on the EGCG decrease. The effect of EGCG on the antibiotic resistance of MRSA was also enhanced in the presence of ascorbic acid. The addition of an antioxidant may affect other pharmacological effects of polyphenols in analogous ways, although this does not mean the clinical usefulness of the addition directly.  相似文献   

16.
The soluble proanthocyanidins of the coloured seed coats of Vicia faba L. were isolated and separated by solvent partition. The chemical characteristics of the proanthocyanidins were elucidated by total oxidation and partial degradation in the presence of phloroglucinol followed by HPLC analysis. The native extract of proanthocyanidins contained (+)-gallocatechin, (-)-epigallocatechin, (+)-catechin and (-)-epicatechin units. Oligomeric procyanidins were purified by chromatography on Sephadex LH-20 and the accessible compounds were isolated by RP-HPLC using a Licrospher Li 100 Column. The structures of the purified oligomeric procyanidins were elucidated using a procedure involving TLC, UV spectroscopy, ESI-MS and HPLC analysis of the products from the phloroglucinol reaction. The major condensed tannins of Vicia faba comprise six compounds identified as two A-type procyanidin dimers, the procyanidin dimers B1, B2 and B3, and a procyanidin trimer.  相似文献   

17.
Sucrose phosphorylase from Leuconostoc mesenteroides was found to catalyze transglycosylation from sucrose to catechins. All catechins were efficient glycosyl acceptors and their transfer ratios were more than 40%. The acceptor specificity of the enzyme decreased in the following order: (?)-epicatechin gallate= (+)-catechin> (?)-epicatechin > (?)-epigallocatechin gallate> (?)-epigallocatechin. About 150 mg of the purified transfer product was obtained from 100 mg of (+)-catechin. Its structure was identified as (+)-catechin 3′-O-α-D-glucopyranoside (C-G) on the bases of the secondary ion mass spectrometry analysis, the component analyses of its enzymatic hydrolyzates, and the nulcear magnetic resonance analysis. The browning resistance of C-G to light irradiation was greatly increased compared to that of (+)-catechin. The solubility of C-G in water was 50-fold higher than that of (+)-catechin. The antioxidative activity of C-G in the aqueous system with riboflavin was almost equal to that of (+)-catechin. In addition, C-G strongly inhibited tyrosinase, in contrast with (+)-catechin, which is the substrate of tyrosinase. The inhibitory pattern of C-G was competitive using L-β-3,4-dihydroxyphenylalanine as a substrate.  相似文献   

18.
Deodorizing effects of tea catechins on amines were examined under alkaline conditions to eliminate the neutralization reaction. They showed deodorizing activity on ethylamine, but none on dimethylamine or trimethylamine. Deodorizing activity on ethylamine was found to be in the order of (-)-epigallocatechin gallate > gallic acid > (-)-epigallocatechin (EGC) > (-)-epicatechin gallate > ethyl gallate > (+)-catechin = (-)-epicatechin. Further, reaction products of EGC with methylamine, ethylamine, and ammonia were detected by HPLC, indicating that a deodorizing reaction other than neutralization occurs. From structural analysis of the reaction product with the methylamine isolated as a peracetylated derivative, the product was presumed to be methylamine substituted EGC, in which the hydroxyl group of EGC at the 4' position is replaced by the methylamino group. The same replacement reaction took place in the case of ethylamine and ammonia.  相似文献   

19.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

20.
Tanaka T  Kondou K  Kouno I 《Phytochemistry》2000,53(2):311-316
To examine the metabolism of proanthocyanidins in banana fruit, (-)-epigallocatechin was treated with the homogenate of the fruit flesh to yield (-)-gallocatechin and an oxidation product, 1-(3,4,5-trihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)-2-hydroxy-1-propan one. The latter product is a stable form of a key intermediate in the oxidative metabolism of flavan-3-ols, and is also related to the biogenesis of A-type proanthocyanidins. In addition, treatment of the reaction mixture with o-phenylenediamine afforded monomeric and dimeric phenazine derivatives generated by condensation with the o-quinone form of the oxidation product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号