首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   

2.
Seven acylated cyanidin 3-sambubioside-5-glucosides were isolated from the flowers of three garden plants in the Cruciferae. Specifically, four pigments were isolated from Lobularia maritima (L.) Desv., together with a known pigment, as well as, three pigments from Lunaria annua L., and two known pigments from Cheiranthus cheiri L. These pigments were determined to be cyanidin 3-O-[2-O-((acyl-II)-(beta-d-xylopyranosyl))-6-O-(acyl-I)-beta-d-glucopyranoside]-5-O-[6-O-(acyl-III)-beta-d-glucopyranoside], in which the acyl-I group is represented by glucosyl-p-coumaric acid, p-coumaric acid and ferulic acid, acyl-II by caffeic acid and ferulic acid, and acyl-III by malonic acid, respectively. The distribution and biosynthesis of acylated cyanidin 3-sambubioside-5-glucosides are discussed according to the variations of acylation and glucosylation at their 3-sambubiose residues.  相似文献   

3.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

4.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

5.
The major anthocyanin in the leaves and stems of Arabidopsis thaliana has been isolated and shown to be cyanidin 3-O-[2-O(2-O-(sinapoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-p-coumaroyl-beta-D-glucopyranoside] 5-O-[6-O-(malonyl) beta-D-glucopyranoside]. This anthocyanin is a glucosylated version of one of the anthocyanins found in the flowers of the closely related Matthiola incana.  相似文献   

6.
Six acylated delphinidin glycosides (pigments 1-6) and one acylated kaempferol glycoside (pigment 9) were isolated from the blue flowers of cape stock (Heliophila coronopifolia) in Brassicaceae along with two known acylated cyanidin glycosides (pigments 7 and 8). Pigments 1-8, based on 3-sambubioside-5-glucosides of delphinidin and cyanidin, were acylated with hydroxycinnamic acids at 3-glycosyl residues of anthocyanidins. Using spectroscopic and chemical methods, the structures of pigments 1, 2, 5, and 6 were determined to be: delphinidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(acyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were, respectively, cis-p-coumaric acid for pigment 1, trans-caffeic acid for pigment 2, trans-p-coumaric acid for pigment 5 (a main pigment) and trans-ferulic acid for pigment 6, respectively. Moreover, the structure of pigments 3 and 4 were elucidated, respectively, as a demalonyl pigment 5 and a demalonyl pigment 6. Two known anthocyanins (pigments 7 and 8) were identified to be cyanidin 3-(6-p-coumaroyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 7 and cyanidin 3-(6-feruloyl-sambubioside)-5-(6-malonyl-glucoside) for pigment 8 as minor anthocyanin pigments. A flavonol pigment (pigment 9) was isolated from its flowers and determined to be kaempferol 3-O-[6-O-(trans-feruloyl)-β-glucopyranoside]-7-O-cellobioside-4′-O-glucopyranoside as the main flavonol pigment.On the visible absorption spectral curve of the fresh blue petals of this plant and its petal pressed juice in the pH 5.0 buffer solution, three characteristic absorption maxima were observed at 546, 583 and 635 nm. However, the absorption curve of pigment 5 (a main anthocyanin in its flower) exhibited only one maximum at 569 nm in the pH 5.0 buffer solution, and violet color. The color of pigment 5 was observed to be very unstable in the pH 5.0 solution and soon decayed. In the pH 5.0 solution, the violet color of pigment 5 was restored as pure blue color by addition of pigment 9 (a main flavonol in this flower) like its fresh flower, and its blue solution exhibited the same three maxima at 546, 583 and 635 nm. On the other hand, the violet color of pigment 5 in the pH 5.0 buffer solution was not restored as pure blue color by addition of deacyl pigment 9 or rutin (a typical flower copigment). It is particularly interesting that, a blue anthocyanin-flavonol complex was extracted from the blue flowers of this plant with H2O or 5% HOAc solution as a dark blue powder. This complex exhibited the same absorption maxima at 546, 583 and 635 nm in the pH 5.0 buffer solution. Analysis of FAB mass measurement established that this blue anthocyanin-flavonol complex was composed of one molecule each of pigment 5 and pigment 9, exhibiting a molecular ion [M+1] + at 2102 m/z (C93H105O55 calc. 2101.542). However, this blue complex is extremely unstable in acid solution. It really dissociates into pigment 5 and pigment 9.  相似文献   

7.
Acylated malvidin 3-glucoside was isolated from the purple flowers of Impatiens textori Miq. as a major anthocyanin component along with malvidin 3-(6″-malonyl-glucoside). Its structure was elucidated to be malvidin 3-O-[6-O-(3-hydroxy-3-methylglutaryl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

8.
Five acylated peonidin glycosides were isolated from the pale gray-purple flowers of a duskish mutant in the Japanese morning glory (Ipomoea nil or Pharbitis nil) as major pigments, along with a known anthocyanin, Heavenly Blue Anthocyanin (HBA). Three of these were based on peonidin 3-sophoroside and two on peonidin 3-sophoroside-5-glucoside as their deacylanthocyanins; both deacylanthocyanins were acylated with caffeic acid and/or glucosylcaffeic acids. By spectroscopic and chemical methods, the structures of the former three pigments were determined to be 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside], 3-O-[2-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-glucopyranoside], and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] of peonidin. The structures of the latter two pigments were also confirmed as 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside, and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside of peonidin. The mutation affecting glycosylation and acylation in anthocyanin biosynthesis of Japanese morning glory was discussed.  相似文献   

9.
Acylated anthocyanins from the blue-violet flowers of Anemone coronaria   总被引:2,自引:0,他引:2  
Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside].  相似文献   

10.
A novel tetra-acylated cyanidin 3-sophoroside-5-glucoside was isolated from the purple-violet flowers of Moricandia arvensis (L.) DC. (Family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-O-(trans-caffeoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

11.
Acylated anthocyanins from red radish (Raphanus sativus L.)   总被引:5,自引:0,他引:5  
Twelve acylated anthocyanins were isolated from the red radish (Raphanus sativus L.) and their structures were determined by spectroscopic analyses. Six of these were identified as pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl]-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-caffeoyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), and pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(2-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside).  相似文献   

12.
13.
Bioassay directed extraction and purification of mango peels revealed the 5-(11'Z-heptadecenyl)-resorcinol (1) and the known 5-(8'Z,11'Z-heptadecadienyl)-resorcinol (2) previously not described in Mangifera indica L. The structures of both compounds were determined by extensive 1D and 2D NMR studies and MS. Both compounds exhibited potent cyclooxygenase (COX)-1 and COX-2 inhibitory activity with IC(50) values ranging from 1.9 (2) to 3.5 microM (1) and from 3.5 (2) to 4.4 (1) microM, respectively, coming close to the IC(50) values of reference drugs. 5-Lipoxygenase (5-LOX) catalyzed leukotriene formation was only slightly inhibited. Structure-activity studies by referring to synthetic saturated homologues indicated that the degree of unsaturation in the alkyl chain plays a key role for COX inhibitory activity, whereas the influence of chain length was less significant.  相似文献   

14.
15.
Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly to SDG. The linker molecule HMGA was found to account for 11% (w/w) of the lignan macromolecule. Based on the extinction coefficients and RP-HPLC data, it was determined that SDG contributes for 62.0% (w/w) to the lignan macromolecule, while CouAG, FeAG, and HDG contribute for 12.2, 9.0, and 5.7% (w/w), respectively.Analysis of fractions of lignan macromolecule showed that the higher the molecular mass, the higher the proportion of SDG was. An inverse relation between the molecular mass and the proportion (%) CouAG + FeAG was found. Together with the structural information of oligomers of lignan macromolecule obtained after partial saponification, it is hypothesized that the amount of CouAG + FeAG present during biosynthesis determines the chain length of lignan macromolecule.Furthermore, the chain length was estimated from a model describing lignan macromolecule based on structural and compositional data. The average chain length of the lignan macromolceule was calculated to be three SDG moieties with CouAG or FeAG at each of the terminal positions, with a variation between one and seven SDG moieties.  相似文献   

16.
To further understand flowering and flower organ formation in the monocot crop saffron crocus (Crocus sativus L.), we cloned four MIKCc type II MADS-box cDNA sequences of the E-class SEPALLATA3 (SEP3) subfamily designated CsatSEP3a/b/c/c_as as well as the three respective genomic sequences. Sequence analysis showed that cDNA sequences of CsatSEP3 c and c_as are the products of alternative splicing of the CsatSEP3c gene. Bioinformatics analysis with putative orthologous sequences from various plant species suggested that all four cDNA sequences encode for SEP3-like proteins with characteristic motifs and amino acids, and highlighted intriguing sequence features. Phylogenetically, the isolated sequences were closest to the SEP3-like genes from monocots such as Asparagus virgatus, Oryza sativa, Zea mays, and the dicot Arabidopsis SEP3 gene. All four isolated C. sativus sequences were strongly expressed in flowers and in all flower organs: whorl1 tepals, whorl2 tepals, stamens and carpels, but not in leaves. Expression of CsatSEP3a/b/c/c_as cDNAs was compared in wild-type and mutant flowers. Expression of the isolatedCsatSEP3-like genes in whorl1 tepals together with E-class CsatAP1/FUL subfamily and B-class CsatAP3 and CsatPI subfamilies of genes, fits the ABCE “quartet model,” an extended form of the original ABC model proposed to explain the homeotic transformation of whorl1 sepals into whorl1 tepals in Liliales and Asparagales plants such as C. sativus. This conclusion was also supported by the interaction of the CsatSEP3b protein with CsatAP1/FUL and CsatAP3 proteins. In contrast, expression of both B-class CsatAP3 and CsatPI genes and the C-class CsatAGAMOUS genes together with E-class CsatSEP3-like genes in carpels, without any phenotypic effects on carpels, raises questions about the role of these gene classes in carpel formation in this non-grass monocot and requires further experimentation. Finally, taking advantage of the size and sequence differences in amplified genomic sequences of the triploid C. sativus and comparing them with the respective sequences from C. tomasii, C. hadriaticus and C. cartwrightianus, three putative wild-type diploid progenitor species, we examined the origin of CsatSEP3a sequence.  相似文献   

17.
The triacyl anthocyanins, Leschenaultia blue anthocyanins 1 and 2 (LBAs 1 and 2) were isolated from the blue flowers of Leschenaultia R. Br. cv. Violet Lena (Goodeniaceae), in which LBA 1 was present as a dominant pigment. The structure of LBA 1 was elucidated to be delphinidin 3-O-[6-O-(malonyl)-beta-D-glucopyranoside]-7-O-[6-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] by application of chemical and spectroscopic methods. Since LAB 2 was isolated in small amount, its structure was tentatively assigned as either delphinidin 3-(malonylglucoside)-7-[(glucosyl-p-coumaroyl)-(glucosylcaffeoyl)-glucoside] or delphinidin 3-(malonyl-glucoside)-7-[(glucosyl-caffeoyl)(glucosyl-p-coumaroyl)-glucoside]. This is the first report of the occurrence of 7-polyacylated anthocyanins in the family of Goodeniaceae, although others have been found in the families of the Ranunculaceae, Campanulaceae, and Compositae. Moreover, delphinidin 3-glycoside-7-di-(glucosylcaffeoyl)-glucoside has been reported only in the flowers of Platycodon grandiflorum (Campanulaceae). From a chemotaxonomical viewpoint, the Goodeniaceae may be closely related to the Campanulaceae.  相似文献   

18.
19.
Nasri N  Khaldi A  Fady B  Triki S 《Phytochemistry》2005,66(14):1729-1735
Pinus pinea L. is widely disseminated all over the Mediterranean Basin. Qualitatively, P. pinea fatty acid seed composition is identical and typical of the genus Pinus. This composition is made of unsaturated oil with several unusual polymethylene-interrupted unsaturated fatty acids. Linoleic acid is the major fatty acid followed by oleic, palmitic and stearic acids. Quantitatively, for all Mediterranean populations, total amounts of fatty acids seem to be fairly constant and independent from their origin. When applying principal component analysis, it seems that there is not a distinct geographical variability. Tunisian populations appear to be integral part of the Mediterranean populations without any particular structuring. Taking into account this research and the data reported in the literature, we can confirm that P. pinea expresses no significant variability. This low genetic diversity revealed by fatty acid composition can be explained by anthropogenetic diffusion of genetically homogeneous reproductive material as early as the first explorations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号