共查询到20条相似文献,搜索用时 15 毫秒
1.
Human kallikrein hK3 (prostate-specific antigen) is a chymotrypsin-like serine protease which is widely used in the diagnosis of prostate cancer. Assays of the enzymatic activity of hK3 in extracellular fluids have been limited by a lack of sensitive synthetic substrates. This report describes the design of a series of internally quenched fluorescent peptides containing an amino acid sequence based on preferential hK3 cleavage sites in semenogelins. Those were identified by 2-D gel electrophoresis analysis and N-terminal sequencing of semenogelin fragments generated by ex vivo proteolysis in freshly ejaculated semen. These peptides were cleaved by hK3 at the C-terminal of certain tyrosyl or glutaminyl residues with k(cat)/K(m) values of 15000-60000 M(-1) s(-1). The substrate Abz-SSIYSQTEEQ-EDDnp was cleaved at the Tyr-Ser bond with a specificity constant k(cat)/K(m) of 60000 M(-1) s(-1), making it the best substrate for hK3 described to date. 相似文献
2.
Diethylnitrosamine (DEN) is a well-known carcinogenic substance that requires microsomal activation before it can react with DNA to cause mutations and cancer. The aim of this study was to use in vivo spin trapping and spin probe techniques to investigate whether free radicals are generated in rat liver tissue during DEN activation. We used alpha-phenyl-n-tert-butylnitrone (PBN) as the spin trapping agent, which was delivered through an intraperitoneal injection before DEN administration. One hour after DEN administration, multicomponent PBN adducts in the bile were detected, and the intensities were diminished by the cytochrome P450 inhibitor SKF-525A. A computer simulation of the ESR signals revealed the presence of a lipid-derived radical. Using the in vivo spin probe/ESR technique, the signal decay rate of methoxycarbonyl-PROXYL was significantly increased in the DEN-treated group compared with the rate in the vehicle group. The enhanced signal decay rate was restored with PBN and/or SKF-525A pretreatment. These results suggested that lipid-derived free radicals were generated in the liver within 1 h after DEN administration. 相似文献
3.
H Utsumi E Muto S Masuda A Hamada 《Biochemical and biophysical research communications》1990,172(3):1342-1348
The in vivo measurement of nitroxide radicals in whole mouse was carried out by L-band ESR spectroscopy. Spectra were successively observed in hepatic and bladder domains of female mice after intravenous administration of spin-labeled compounds (CPROXYL or TEMPOL). The signal intensities from both domains decreased gradually. The kinetic constants of clearance in the hepatic domain were 0.09/min for CPROXYL and 0.71/min for TEMPOL. The clearance constants in the bladder domain coincided with those in the hepatic domain within experimental error, whereas the constants in collected blood were 1/7-1/10 of those in the hepatic or bladder domains. The mechanism of clearance of nitroxide radicals in whole mice is discussed. 相似文献
4.
He Guanglong Samouilov Alexandre Kuppusamy Periannan Zweier Jay L. 《Molecular and cellular biochemistry》2002,(1):359-367
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spatial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans. 相似文献
5.
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spa-tial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans. 相似文献
6.
Liver cell plasma membranes of male rats were isolated and separated into two fractions, one rich in bile canalicular membranes (BCM) and the other comprising the rest of the plasma membrane (PM). Aliquots of BCM, PM, and microsomes were incubated with deoxycholic, chenodeoxycholic, or cholic acid at bile acid - membrane phospholipid mole ratios up to 100, and the phospholipid solubilization from the PM and from microsomes was linear and apparently nonselective, while that from BCM was biphasic and distinctly selective. Phosphatidyl choline and phosphatidyl ethanolamine made up 90% of the phospholipids solubilized from the BCM at a bile acid - membrane phospholipid mole ratio sufficient to solubilize about 50% of the total phospholipids of the BCM. Of particular interest was the observation that the molecular species and fatty acid composition of the phospholipids solubilized from the BCM under these experimental conditions were similar to those of bile obtained from the same animal, and were quite unlike those solubilized at higher bile acid - phospholipids mole ratios. The data are discussed in terms of the mechanism of the biliary secretion of phospholipids. 相似文献
7.
Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6 h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin–gadolinium–diethylene triamine pentaacetic acid–biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy. 相似文献
8.
Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro 下载免费PDF全文
Elena A. Lapshina Maria Zamaraeva Vitali T. Cheshchevik Ewa Olchowik‐Grabarek Szymon Sekowski Izabela Zukowska Nina G. Golovach Vasili N. Burd Ilya B. Zavodnik 《Cell biochemistry and function》2015,33(4):202-210
The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical‐generating systems and those on mitochondrial ultrastructure during carbon tetrachloride‐induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride‐induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical‐generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50 = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50 = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50 = 53 ± 4 µg/ml). The IC50 for reduction of 1,1‐diphenyl‐2‐picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria‐addressed effects of flavonoids might be related both to radical‐scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
The influence of glutamate and agonists of its ionotropic receptors on free radical formation in rat brain synaptosomes was
investigated using the fluorescent dye DCFDA. Glutamate at concentrations of 100 μM and 1 mM increased the production of reactive
oxygen species. This phenomenon was eliminated by removing calcium from the incubation medium. Addition of NMDA (100 μM) or
kainate (100 μM) to a suspension of synaptosomes also led to free radical formation. The influence of glutamate receptor agonists
was blocked by the specific antagonists MK-801 and NBQX. Thus, activation of NMDA and AMPA/kainate receptors can lead to oxidative
stress in neuronal presynaptic endings. 相似文献
10.
The effects of ethanol administered as a 15% solution in drinking fluid on weight gain, soluble liver protein and the activity of the three enzymes of oxygen radical metabolism (i.e., superoxide dismutase, catalase, and glutathione peroxidase) were studied in five inbred strains of mice (129/ReJ, BALB/c, C3H/HeSnJ, C57BL/6J, Csb) and Sprague Dawley rats, relative to age, sex, and genotype matched controls. Animals maintained on ethanol exhibited lower weight gains and elevation of soluble liver protein than controls. Total superoxide dismutase, catalase and glutathione peroxidase activity in ethanol-treated animals were in general reduced in comparison to that of their matched controls, with each strain showing genotype specific enzyme activity. Such ethanol feeding results are attributed to the direct and indirect effects of this treatment protocol and raise the possibility that ethanol-fed animals may be susceptible to free radical damage and at least some of the cellular damages observed following ethanol challenges could be attributed to the reduced level of these protective enzymes. 相似文献
11.
Several indices of free radical generation were determined in limbic structures after kainate (KA)-induced seizure activity in adult and postnatal day (PND) 12 and 17 rats. Superoxide dismutase, catalase, and glutathione peroxidase activities were measured in piriform cortex and hippocampal subfields at 8, 16, 48 h, and 5 days after KA injection in adults and pups, and also at 3 weeks postinjection in adults. KA-induced seizure activity had no significant effect on enzyme activities in PND 12 and 17 rats. In adults, superoxide dismutase and catalase activities were significantly increased at 5 days after KA administration, and returned to preinjection levels by 3 weeks. Glutathione peroxidase activity was also increased significantly at 5 days postinjection, but remained elevated at 3 weeks. Lipid peroxidation, as indicated by malondialdehyde (MDA) concentration, exhibited an early significant increase at 8 and 16 h, followed at 48 h and 5 days by a significant decrease. At 3 weeks postinjection, MDA levels were still significantly decreased in CA3 and dentate gyrus. KA administration in PND 12 and 17 rats had no significant effect on MDA content. KA-induced seizure activity in adults also resulted in a large and sustained increase in protein oxidation in piriform cortex and hippocampus. The early increase in MDA and protein oxidation in adult rats strongly suggests the involvement of oxygen free radicals in the initial phases of KA-induced pathology, whereas the changes in scavenging enzyme activities and MDA content at 5 days and 3 weeks post KA injection possibly reflect glial proliferation subsequent to neuronal death. 相似文献
12.
In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice 总被引:6,自引:0,他引:6
E K Lai C Crossley R Sridhar H P Misra E G Janzen P B McCay 《Archives of biochemistry and biophysics》1986,244(1):156-160
Spin trapping techniques combined with electron spin resonance spectroscopy were used to capture and detect free radicals generated in vivo during exposure to ionizing radiation. Tissue extracts of mice given an intraperitoneal or intragastric dose of the spin trap, alpha-phenyl-t-butyl nitrone prior to exposure to gamma radiation (2 to 5 Gy), contained a radical adduct with hyperfine splitting constants characteristic of spin adducts of carbon-centered lipid radicals. Considerably more radicals were trapped in tissues when the trap was given 3 h before radiation as compared to 30 min before exposure. The radicals observed may either be secondary species resulting from an attack on cellular components by products of water radiolysis, or primary radicals resulting from direct interaction of the radiation with biological molecules. The results indicate that the spin trapping agent is able to penetrate well into animal tissues, and to capture radical species under conditions where the latter would be expected to occur. 相似文献
13.
Masanori Kaneko Hisamichi Masuda Hideki Suzuki Yuji Matsumoto Akira Kobayashi Noboru Yamazaki 《Molecular and cellular biochemistry》1993,125(2):163-169
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals. 相似文献
14.
Rats were infused for 3.5 to 10 hrs with either red cells or plasma previously labelled in vivo by [3H]-cholesterol. Cholesterol specific radioactivities were measured in plasma, HDL, LDL and VLDL, and various tissues. Red cell infusions led to a higher labelling of free than of esterified cholesterol in the plasma of infused rats. The opposite situation was observed following plasma infusion. Comparison of free and esterified cholesterol specific radioactivities in each tissue showed that esterified cholesterol was transferred from plasma to all the tissues, except the adrenals. Study of the ratios of cholesterol specific radioactivities from one experimental group to the other in each tissue, made it possible to demonstrate clearly the occurence of hydrolysis within all the studied tissues except 5 of them where its existence remains uncertain (lung, heart, kidney, tendon, muscle) and of esterification in 3 tissues (adrenal, liver lung). In addition, ratios of cholesterol radioactivities (free/ester) were found to be identical in plasma and in 4 tissues, where neither hydrolysis nor esterification were detected (heart, muscle, kidney, tendon). This finding is an argument in favor of a simultaneous transport of free and esterified cholesterol from plasma into these 4 tissues and suggests that the entire lipoprotein particles can penetrate these tissues, with no specificity of one special class. In adrenal, unlike all other tissues: 1) the turnover of esterified cholesterol was achieved mostly by hydrolysis and esterification in situ; 2) a preferential lipoprotein class (LDL) was responsible for the transport of free cholesterol from the plasma. 相似文献
15.
In vivo protective effects of urocortin on ischemia-reperfusion injury in rat heart via free radical mechanisms 总被引:4,自引:0,他引:4
The aim of this study was to investigate the effects of urocortin (UCN) on oxidative stress and the mechanisms of urocortin on ischemia-reperfusion injury in vivo in the rat model. Thirty-six Sprague-Dawley rats were divided into 6 groups, including sham, control (normal saline solution), UCN1, UCN2, UCN3, and verapamil groups. The left anterior descending coronary artery of all rats except those in the sham group was treated with a 30-min occlusion followed by a 60-min reperfusion. Just before the occlusion, normal saline solution, UCN (5, 10, and 20 microg/kg body mass), or verapamil (1 mg/kg body mass) was administered. Heart rates, beating rhythm, and S-T segments were constantly monitored using an ECG. At the completion of the drug administration, blood samples were taken to measure the activity of superoxide dismutase (SOD), malonaldehyde (MDA), glutathione peroxidase (GSH-PX), and nitric oxide (NO) to evaluate the effects of UCN on oxidative stress. Finally, the size of infarction was measured. Arrhythmia rates were significantly lower, and the infarction size was significantly smaller (p < 0.01), in the UCN groups vs. the control group. Verapamil also significantly reduced arrhythmia rates and infarction size. The MDA activities were remarkably diminished, whereas the SOD, GSH-PX, and NO activities were significantly higher in the UCN and VER groups (p < 0.01). MDA, SOD, and NO activities were strongly correlated with UCN doses. These results suggest that UCN may play a protective role in ischemia-reperfusion injury in rat hearts against the oxidative stress by inhibiting free radicals' activities. 相似文献
16.
Although free radicals may be involved in various types of UV-induced injuries, only a few in vivo studies of the generation of free radicals, including oxygen radicals, during exposure to ultraviolet light (UV) have been reported. In this study, the nitroxyl probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl was intravenously injected into hairless mice, and its decay was monitored in the skin with an in vivo EPR spectrometer equipped with a surface-coil-type resonator. The rate of decay of the EPR signal increased during UV (UVA+B) irradiation. This increase in signal decay was suppressed by preadministration of a spin trap, N-tert-butyl-alpha-phenylnitrone (PBN). PBN did not change the rate of signal decay in nonirradiated mice. The correlation between signal decay rate and physiological parameters such as blood velocity, blood mass, or skin temperature was low. The decay rate responded rapidly and reversibly to starting and stopping the UV illumination. Hydroxyl and peroxyl radicals caused reduction of the probe signal in vitro, and PBN inhibited only the peroxyl radical-induced signal reduction. These observations suggest that peroxyl radicals are generated in the skin of live mice during UVA+B irradiation. 相似文献
17.
The in vitro biooxidation of 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMP), 4-hydroxy-2,2,4,4-tetramethyl-1,3-oxazolidine (TEMO) and diphenylamine (DPA) by hog liver microsomes to their respective nitroxide free radicals, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2,4,4-tetramethyl-1,3-oxazolidine-1-oxyl (TEMOO), and diphenylnitroxide (DPNO) has been investigated. For extending the life span of the liver microsomes, a calcium alginate immobilization procedure was used. The biooxidation rates of the above amines to their respective nitroxide metabolites were measured by means of oxygen uptake at 37 degrees C and pH 7.4. N-octylamine was found to be an activator in the biooxidation of the amines. The formation of the nitroxide radicals was identified by E.S.R. spectroscopy. 相似文献
18.
19.
Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole 总被引:2,自引:0,他引:2
Electron spin resonance spin-trapping techniques were used to investigate the in vitro and in vivo formation of free radicals during 3-methylindole (3MI) metabolism by goat lung. Utilizing the spin trap phenyl-t-butylnitrone, a nitrogen-centered free radical was detected 3 min after the addition of 3MI to an in vitro incubation system containing goat lung microsomes in the presence of NADPH and O2. The spectrum of the spin adduct was identical to that observed when 3MI was irradiated with ultraviolet light. A carbon-centered radical was also observed which increased in concentration with increasing incubation time. Microsomal incubations containing ferrous sulfate in the absence of 3MI to initiate lipid peroxidation produced the same carbon-centered free radical as obtained by spin-trapping. Malondialdehyde, and end product of lipid peroxidation, was also found to increase in concentration with increasing incubation time of 3MI. The concept that 3MI causes lipid peroxidation in the lung was supported by the in vivo study in which a carbon-centered radical was spin-trapped by phenyl-t-butylnitrone in lungs of intact goats infused with 3MI. This carbon-centered radical had hyperfine splitting constants identical to those carbon-centered free radicals trapped in in vitro incubations of 3MI. These data demonstrate that microsomal metabolism of 3MI produces a nitrogen-centered radical from 3MI which initiates lipid peroxidation in vitro and in vivo causing the formation of carbon-centered radicals from microsomal membranes. 相似文献
20.
K Ciechanowski 《Polski tygodnik lekarski (Warsaw, Poland : 1960)》1987,42(31-32):939-941