首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Annotation of the Affymetrix porcine genome microarray   总被引:1,自引:0,他引:1  
  相似文献   

2.
Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expression, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocessing methods, focusing on the most common analyses-detection of differential expression and gene or sample clustering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene set analysis and network modeling, are becoming more common; however, the same preprocessing methods are typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate analyses and provide guidance to the user as to which methods are most appropriate.  相似文献   

3.

Background  

A typical microarray experiment has many sources of variation which can be attributed to biological and technical causes. Identifying sources of variation and assessing their magnitude, among other factors, are important for optimal experimental design. The objectives of this study were: (1) to estimate relative magnitudes of different sources of variation and (2) to evaluate agreement between biological and technical replicates.  相似文献   

4.
5.
6.
7.
Microarrays measure the expression of large numbers of genes simultaneously and can be used to delve into interaction networks involving many genes at a time. However, it is often difficult to decide to what extent knowledge about the expression of genes gleaned in one model organism can be transferred to other species. This can be examined either by measuring the expression of genes of interest under comparable experimental conditions in other species, or by gathering the necessary data from comparable microarray experiments. However, it is essential to know which genes to compare between the organisms. To facilitate comparison of expression data across different species, we have implemented a Web-based software tool that provides information about sequence orthologs across a range of Affymetrix microarray chips. AffyTrees provides a quick and easy way of assigning which probe sets on different Affymetrix chips measure the expression of orthologous genes. Even in cases where gene or genome duplications have complicated the assignment, groups of comparable probe sets can be identified. The phylogenetic trees provide a resource that can be used to improve sequence annotation and detect biases in the sequence complement of Affymetrix chips. Being able to identify sequence orthologs and recognize biases in the sequence complement of chips is necessary for reliable cross-species microarray comparison. As the amount of work required to generate a single phylogeny in a nonautomated manner is considerable, AffyTrees can greatly reduce the workload for scientists interested in large-scale cross-species comparisons.  相似文献   

8.
We describe methods and software tools for doing data analysis based on Affymetrix microarray data, emphasizing often neglected issues. In our experience with neuroscience studies, experimental design and quality assessment are vital. We also describe in detail the pre-processing methods we have found useful for Affymetrix data. Finally, we summarize the statistical literature and describe some pitfalls in the post-processing analysis.  相似文献   

9.

Background  

Microarray technology is a high-throughput method for measuring the expression levels of thousand of genes simultaneously. The observed intensities combine a non-specific binding, which is a major disadvantage with microarray data. The Affymetrix GeneChip assigned a mismatch (MM) probe with the intention of measuring non-specific binding, but various opinions exist regarding usefulness of MM measures. It should be noted that not all observed intensities are associated with expressed genes and many of those are associated with unexpressed genes, of which measured values express mere noise due to non-specific binding, cross-hybridization, or stray signals. The implicit assumption that all genes are expressed leads to poor performance of microarray data analyses. We assume two functional states of a gene - expressed or unexpressed - and propose a robust method to estimate gene expression states using an order relationship between PM and MM measures.  相似文献   

10.
Combining multiple microarray studies and modeling interstudy variation   总被引:1,自引:0,他引:1  
We have established a method for systematic integration of multiple microarray datasets. The method was applied to two different sets of cancer profiling studies. The change of gene expression in cancer was expressed as 'effect size', a standardized index measuring the magnitude of a treatment or covariate effect. The effect sizes were combined to obtain the estimate of the overall mean. The statistical significance was determined by a permutation test extended to multiple datasets. It was shown that the data integration promotes the discovery of small but consistent expression changes with increased sensitivity and reliability. The effect size methods provided the efficient modeling framework for addressing interstudy variation as well. Based on the result of homogeneity tests, a fixed effects model was adopted for one set of datasets that had been created in controlled experimental conditions. By contrast, a random effects model was shown to be appropriate for the other set of datasets that had been published by independent groups. We also developed an alternative modeling procedure based on a Bayesian approach, which would offer flexibility and robustness compared to the classical procedure.  相似文献   

11.
We have conducted a study to compare the variability in measured gene expression levels associated with three types of microarray platforms. Total RNA samples were obtained from liver tissue of four male mice, two each from inbred strains A/J and C57BL/6J. The same four samples were assayed on Affymetrix Mouse Genome Expression Set 430 GeneChips (MOE430A and MOE430B), spotted cDNA microarrays, and spotted oligonucleotide microarrays using eight arrays of each type. Variances associated with measurement error were observed to be comparable across all microarray platforms. The MOE430A GeneChips and cDNA arrays had higher precision across technical replicates than the MOE430B GeneChips and oligonucleotide arrays. The Affymetrix platform showed the greatest range in the magnitude of expression levels followed by the oligonucleotide arrays. We observed good concordance in both estimated expression level and statistical significance of common genes between the Affymetrix MOE430A GeneChip and the oligonucleotide arrays. Despite their apparently high precision, cDNA arrays showed poor concordance with other platforms.  相似文献   

12.
13.
Meta-analysis combines affymetrix microarray results across laboratories   总被引:3,自引:0,他引:3  
With microarray technology becoming more prevalent in recent years, it is now common for several laboratories to employ the same microarray technology to identify differentially expressed genes that are related to the same phenomenon in the same species. Although experimental specifics may be similar, each laboratory will typically produce a slightly different list of statistically significant genes, which calls into question the validity of each gene list (i.e. which list is best). A statistically-based meta-analytic approach to microarray analysis systematically combines results from the different laboratories to provide a single estimate of the degree of differential expression for each gene. This approach provides a more precise view of genes that are of significant interest, while simultaneously allowing for differences between laboratories. The widely-used Affymetrix oligonucleotide array and its software are of particular interest because the results are naturally suited to a meta-analysis. A simulation model based on the Affymetrix platform is developed to examine the adaptive nature of the meta-analytic approach and to illustrate the utility of such an approach in combining microarray results across laboratories.  相似文献   

14.
15.
16.
Oligonucleotide microarrays are an informative tool to elucidate gene regulatory networks. In order for gene expression levels to be comparable across microarrays, normalization procedures have to be invoked. A large number of methods have been described to correct for systematic biases in microarray experiments. The performance of these methods has been tested only to a limited extend. Here, we evaluate two different types of microarray analyses: (i) the same gene in replicate samples and (ii) different, but co-expressed genes in the same sample. The reliability of the latter analysis needs to be determined for the analysis of regulatory networks and our report is the first attempt to evaluate for the accuracy of different microarray normalization methods in this respect. Consistent with previous results we observed a large effect of the normalization method on the outcome of the expression analyses. Our analyses indicate that different normalization methods should be performed depending on whether a study is aiming to detect differential gene expression between independent samples or whether co-expressed genes should be identified. We make recommendations about the most appropriate method to use.  相似文献   

17.
Combining diagnostic test results to increase accuracy   总被引:4,自引:0,他引:4  
When multiple diagnostic tests are performed on an individual or multiple disease markers are available it may be possible to combine the information to diagnose disease. We consider how to choose linear combinations of markers in order to optimize diagnostic accuracy. The accuracy index to be maximized is the area or partial area under the receiver operating characteristic (ROC) curve. We propose a distribution-free rank-based approach for optimizing the area under the ROC curve and compare it with logistic regression and with classic linear discriminant analysis (LDA). It has been shown that the latter method optimizes the area under the ROC curve when test results have a multivariate normal distribution for diseased and non-diseased populations. Simulation studies suggest that the proposed non-parametric method is efficient when data are multivariate normal.The distribution-free method is generalized to a smooth distribution-free approach to: (i) accommodate some reasonable smoothness assumptions; (ii) incorporate covariate effects; and (iii) yield optimized partial areas under the ROC curve. This latter feature is particularly important since it allows one to focus on a region of the ROC curve which is of most relevance to clinical practice. Neither logistic regression nor LDA necessarily maximize partial areas. The approaches are illustrated on two cancer datasets, one involving serum antigen markers for pancreatic cancer and the other involving longitudinal prostate specific antigen data.  相似文献   

18.
19.

Background  

There are mechanisms, notably ozone degradation, that can damage a single channel of two-channel microarray experiments. Resulting analyses therefore often choose between the unacceptable inclusion of poor quality data or the unpalatable exclusion of some (possibly a lot of) good quality data along with the bad. Two such approaches would be a single channel analysis using some of the data from all of the arrays, and an analysis of all of the data, but only from unaffected arrays. In this paper we examine a 'combined' approach to the analysis of such affected experiments that uses all of the unaffected data.  相似文献   

20.

Background  

Comparison of data produced on different microarray platforms often shows surprising discordance. It is not clear whether this discrepancy is caused by noisy data or by improper probe matching between platforms. We investigated whether the significant level of inconsistency between results produced by alternative gene expression microarray platforms could be reduced by stringent sequence matching of microarray probes. We mapped the short oligo probes of the Affymetrix platform onto cDNA clones of the Stanford microarray platform. Affymetrix probes were reassigned to redefined probe sets if they mapped to the same cDNA clone sequence, regardless of the original manufacturer-defined grouping. The NCI-60 gene expression profiles produced by Affymetrix HuFL platform were recalculated using these redefined probe sets and compared to previously published cDNA measurements of the same panel of RNA samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号