首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lee WY  Zhou X  Or PM  Kwan YW  Yeung JH 《Phytomedicine》2012,19(2):169-176
This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC50 = 24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC50 values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.  相似文献   

2.
Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5′ upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TRα1, TRβ1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TRα1, TRβ1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.  相似文献   

3.

Introduction

Tanshinones are a major class of bioactive ingredients in the traditional herbal medicines, Danshen (Salvia miltiorrhiza). A sensitive and reliable determination method for tanshinones is useful to ensure the quality of Danshen.

Objective

To develop a sensitive and selective analytical method for tanshinones by high‐performance liquid chromatography (HPLC) with fluorescence detection after pre‐column derivatisation.

Methodology

The proposed method depends on derivatisation reaction of tanshinones with 4‐carbomethoxybenzaldehyde and ammonium acetate forming intensely fluorescent imidazole derivative.

Results

The proposed method provided excellent sensitivity with the detection limits of 3.3 nM (66 fmol/injection), 3.2 nM (64 fmol/injection) and 2.0 nM (40 fmol/injection) for cryptotanshinone, tanshinone I and tanshinone IIA, respectively, without the necessity of complicated instrumentations. The developed method is successfully applied to quantify the contents of tanshinones in Danshen.

Conclusion

The developed method is the first analytical method for tanshinones by fluorescence detection. Since the derivatisation reaction is selective for the o‐quinone structure of tanshinone, the developed method will become a suitable mean for the discovering of tanshinone type diterpenoids from herbal samples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
This study explored the effects of Danshen on metabolism/pharmacokinetics of model CYP1A2 substrates and hepatic CYP1A2 expression in rats. The effects of Danshen and tanshinones on CYP1A2 activity was determined by metabolism of model substrates in vitro (phenacetin) and in vivo (caffeine). HPLC was used to determine model substrates/metabolites. The effect of Danshen on CYP1A2 expression was determined by Western blot. Tanshinones (1.25–50 μM) competitively inhibited phenacetin O-deethylation in vitro. Inhibition kinetics studies showed the Ki values were in the order: dihydrotanshinone (3.64 μM), cryptotanshinone (4.07 μM), tanshinone I (22.6 μM) and tanshinone IIA (23.8 μM), furafylline (35.8 μM), a CYP1A2 inhibitor. The Ki of Danshen extract (mainly tanshinones) was 72 μg/ml. Acute Danshen extract treatment (50–200 mg/kg, i.p.) decreased metabolism of caffeine to paraxanthine, with overall decrease in caffeine clearance (14–22%); increase in AUC (11–25%) and plasma T1/2 (12–16%). Danshen treatment with (100 mg/kg/day, i.p. or 200 mg/kg/day, p.o.) for three or fourteen days showed similar pharmacokinetic changes of the CYP1A2 probe substrate without affecting CYP1A2 expression. This study demonstrated that major tanshinones competitively inhibited the metabolism of model CYP1A2 probe substrates but had no effect on rat CYP1A2 expression.  相似文献   

5.
Induction of Human UDP-glucuronosyltransferase 1A1 by Cortisol-GR   总被引:1,自引:0,他引:1  
During the course of the study of UGT1A1 induction by bilirubin, we could not detect the induction of the reporter gene (−3174/+14) of human UGT1A1 in HepG2 by bilirubin (Mol. Biol. Rep. 31: 151–158 (2004)). In this report, we show the finding of the induction of the reporter gene of UGT1A1 by cortisol at 1 μM, a major natural cortico-steroid, with human glucocorticoid receptor (GR). RU486 of a typical GR antagonist at 10 μM inhibited the induction by cortisol from 5.9- to 1.8-fold. This result indicates that the induction by cortisol-GR is dependence on ligand-binding. This induction is caused by the UGT reporter gene itself, from the results of noinduction with control vector pGL2 (equal to pGV-C) in the presence of cortisol-GR. We confirmed that the induction of the reporter gene by cortisol is dependent on the position of proximal element (−97/−53) of UGT1A1. From this result, we concluded that the increase of corticosteroid in neonates must induce the elevation of UGT1A1 after birth and prevent jaundice. With the study of induction by corisol, we studied the influence of co-expression of PXR (pregnenolone xenobiotic receptor) with the UGT1A1 reporter gene and we could not find the induction of UGT1A1 expression in the presence of dexamethasone, rifampicin, or pregnenolone 16α-carbonitrile of the PXR ligands. These results suggest that the induction of UGT1A1 expression by GR is not mediated by PXR, unlike the induction of CYP3A4 through PXR.  相似文献   

6.
用甲醇作提取溶剂,在回流条件下考察了从丹参药材中提取丹参酮类有效成分的过程中,隐丹参酮、丹参酮I及丹参酮IIA等三种丹参酮的热降解行为。结果表明,回流提取过程中所考察的三种丹参酮均发生严重的热降解,降解速率:丹参酮IIA>丹参酮I>隐丹参酮,其热降解均具有零级反应动力学特征;同时,回流提取过程中丹参酮的热降解是在丹参酮共萃物存在下发生的。  相似文献   

7.
In this study, the effects of the extract and four tanshinone compounds from the dried root of Salvia miltiorrhiza Bunge (Labiatae) on the tyrosine phosphorylation of the insulin receptor (IR) β-subunit and the downstream signaling were examined in Chinese-hamster ovary cells expressing human insulin receptors (CHO/IR cells) as well as in 3T3-L1 adipocytes. In addition the translocation of the glucose transporter 4 was investigated in 3T3-L1 adipocytes. Total extract of Danshen (1–10 μg/ml) and the four tanshinones (10 μM) did not show any activity, but the total extract and the tanshinone I, IIA and 15, 16-dihydrotanshinone I except cryptotanshinone enhanced the activity of insulin (1 nM) on the tyrosine phosphorylation of the IR as well as the activation of the downstream kinases Akt, ERK1/2, and GSK3β. In the adipocytes the same IR-downstream signaling and the translocation of glucose transporter 4 were demonstrated by the three tanshinones in the presence of insulin. These insulin-sensitizing activities of tanshinones may be useful for developing a new class of specific IR activators as anti-diabetic agents.  相似文献   

8.
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.  相似文献   

9.
《Phytomedicine》2014,21(11):1264-1272
ObjectiveMultidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.MethodsThe inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones.ResultsBi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity.ConclusionsTaken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.  相似文献   

10.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

11.
12.
《Phytomedicine》2015,22(4):444-451
Background: Soluble epoxide hydrolase (sEH) has been demonstrated to be a key enzyme involved in the pathologic development of several cardiovascular diseases and inflammation, and inhibition of sEH is therefore very helpful or crucial for the treatment of ischemia-reperfusion injury, cardiac hypertrophy, hypertension and inflammation. Danshen, the dried root of Salvia miltiorrhiza (Fam. Labiatae), has been used for the treatment of cardiovascular and cerebrovascular diseases in China and other countries for hundreds of years. Recent studies indicated that Danshen and its preparations also have potential for the management of inflammation. However, little information is available about the possibility of Danshen and its components on sEH inhibition.Purpose and methods: Danshen extracts and its constituents were tested for sEH inhibition using its physiological substrate, 8,9-EET, based on a LC–MS/MS assay in this study.Results: Among the tested 15 compounds, tanshinone IIA and cryptotanshinone were found to be the potent (Ki = 0.87 μM) and medium (Ki = 6.7 μM) mixed-type inhibitors of sEH, respectively. Salvianolic acid C (Ki = 8.6 μM) was proved to be a moderate noncompetitive sEH inhibitor. In consistent with the inhibition results of the pure compounds, the 75% ethanol extract of Danshen (EE, IC50 = 86.5 μg/ml) which contained more tanshinone IIA and cryptotanshinone exhibited more potent inhibition on sEH than the water extract (WE, IC50 > 200 μg/ml) or 1 M NaHCO3 (BE, IC50 > 200 μg/ml) extract.Conclusion: These data indicated that using the ethanol fraction of Danshen and increasing the amounts of tanshinone IIA, cryptotanshinone and salvianolic acid C, especially the contents of tanshinone IIA in Danshen extract or preparations to enhance the inhibitory effects on sEH might be efficient ways to improve its cardiovascular protective and anti-inflammatory effects, and that herbal medicines could be an untapped reservoir for sEH-inhibition agents and developing sEH inhibitors from the cardiovascular protective and anti-inflammatory herbs is a promising approach.  相似文献   

13.
Cytochrome P450 2C9 (CYP2C9) expression is regulated by multiple nuclear receptors including the constitutive androstane receptor (CAR) and pregnane X receptor (PXR). We compared coregulation of CYP2C9 with CYP2B6 and CYP3A4, prototypical target genes for human CAR and PXR using human hepatocyte cultures treated for three days with the PXR activators clotrimazole, rifampin, and ritonavir; the CAR/PXR activator phenobarbital (PB); and the CAR‐selective agonists CITCO, (6‐(4‐chlorophenyl)imidazo[2,1‐β][1,3]thiazole‐5‐carbaldehyde‐O‐(3,4‐dichlorobenzyl)oxime) and phenytoin. Clotrimazole, rifampin, ritonavir, phenytoin, and phenobarbital induced CYP2C9 consistent with previous findings for CYP3A4. We observed EC50 values of 519 μM (phenobarbital), 11 μM (phenytoin), and 0.75 μM (rifampin), similar to those for CYP3A4 induction. Avasimibe, a potent PXR activator, produced nearly identical concentration‐dependent CYP2C9 and CYP3A4 activity profiles and EC50 values. In 17 donors, rifampin increased mean basal CYP2C9 activity from 59 ± 43 to 143 ± 68 pmol/mg protein/min; fold induction ranged from 1.4‐ to 6.4‐fold. Enzyme activity and mRNA measurements after rifampin, CITCO and PB treatment demonstrated potency and efficacy consistent with CYP2C9 regulation being analogous to CYP3A4 rather than CYP2B6. We demonstrate that hepatic CYP2C9 is differentially regulated by agonists of CAR and PXR, and despite sharing common regulatory mechanisms with CYP3A4 and CYP2B6; this enzyme exhibits an induction profile more closely aligned with that of CYP3A4. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:43–58, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20264  相似文献   

14.
When cultivated in 6,7-V medium in suspension culture, Salvia miltiorrhiza, transformed with Agrobacterium tumefaciens C58, grew rapidly, reaching about 9.7 g l–1 dry wt after 12 days. The cell line produced tanshinones: 150 mg cryptotanshinone, 20 mg tanshinone I and 50 mg tanshinone IIA/l and phenolic acids: 530 mg rosmarinic acid and 216 mg lithospermic acid B/l. The phenolic acids were intracellular while about 1/3 of the tanshinones were extracellular. This is the first report of simultaneous production of both phenolic acids and tanshinones in a single culture system.  相似文献   

15.
16.
Hairy root cultures of Salvia miltiorrhiza transformed with Agrobacterium rhizogenes ATCC 15834 produced a tiny amount of tanshinones and a constituent level of phenolic acids under normal growth conditions. Upon elicitation with yeast elicitor, the production of both phenolic acids and tanshinones was enhanced. For example, the contents of two phenolic acids, rosmarinic acid and lithospermic acid B were elevated from 1.24% and 2.59% to 2.89% and 2.98% of dry wt, respectively while the intracellular content of cryptotanshinone increased from 0.001% to as much as 0.096% of dry wt. Yeast elicitor also improved the growth of hairy roots (from 3.9 g/l to 7.3 g/l on a dry wt basis). Liquid chromatography-mass spectrometry (LC-MS) was developed for simultaneous detection and identification of phenolic acids and tanshinones in the extracts of S. miltiorrhiza. Rosmarinic acid, lithospermic acid B, cryptotanshinone, tanshinone I, tanshinone IIA and tanshinone IIB were identified by comparison with standards available. Dihydrotanshinone I and methylenetanshiquinone were tentatively identified by the molecular weights and the elution comparable with the literature. An unknown compound with a molecular weight of 280 was found in yeast-elicitor treated hairy root cultures, which was one of the major tanshinones induced.  相似文献   

17.
CYP3A4 and CYP3A7 mRNA expression levels were markedly up-regulated by dexamethasone (DEX), but not by rifampicin (RIF). CYP3A5 mRNA level was not increased significantly by DEX, RIF, or phenobarbital. Testosterone 6beta-hydroxylase activity was induced to about 2-fold of control by DEX. However, concomitant treatment with RIF did not alter DEX-mediated induction of CYP3A mRNA expression and testosterone 6beta-hydroxylase activity. DEX-mediated induction of CYP3A mRNA was suppressed in a dose-dependent manner by RU486, a glucocorticoid receptor (GR) antagonist. At 5microM RU486, DEX-mediated induction of CYP3A4, CYP3A5, and CYP3A7 mRNA expression was inhibited almost completely. These results suggest that, in human fetal hepatocytes, PXR is not involved in DEX-mediated induction of CYP3A4 and CYP3A7, and that the induction is mediated directly by GR.  相似文献   

18.
CAR and PXR: xenosensors of endocrine disrupters?   总被引:1,自引:0,他引:1  
  相似文献   

19.
Timsit YE  Negishi M 《Steroids》2007,72(3):231-246
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号