首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) and the lipid second messenger phosphatidic acid (PA) are involved in plant defense responses during plant-pathogen interactions. NO has been shown to be involved in the induction of PA production in response to the pathogen associated molecular pattern (PAMP) xylanase in tomato cells. It was shown that NO is critical for PA production induced via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK) but not for the xylanase-induced PA via phospholipase D (PLD). In order to study whether this is a general phenomenon during PAMP perception or if it is particular for xylanase, we studied the effect of the PAMP chitosan in tomato cell suspensions. We observed a rapid NO production in tomato cells treated with chitosan. Chitosan induced the formation of PA by activating both PLD and PLC/DGK. The activation of either phospholipase-mediated signaling pathway was inhibited in cells treated with the NO scavenger cPTIO. This indicates that NO is required for PA generation via both the PLD and PLC/DGK pathway during plant defense response in chitosan elicited cells. Responses downstream PA were studied. PLC inhibitors neomycin and U73122 inhibited chitosan-induced ROS production. Differences between xylanase and chitosan-induced phospholipid signaling pathways are discussed.  相似文献   

2.
Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents.  相似文献   

3.
Macrophages play vital roles in inflammatory responses, and their number at sites of inflammation is strictly regulated by cell death and division. Here, we demonstrate that production of nitric oxide (NO) is a major mechanism whereby ceramide-1-phosphate (C1P) blocks apoptosis in macrophages. However, NO failed to stimulate macrophage proliferation. The prosurvival effect of C1P was blocked by inhibitors of inducible NO synthase. The antiapoptotic effect of C1P was also blocked by phosphatidylinositol 3-kinase or nuclear factor-kappa B inhibitors. Moreover, NO reversed the inhibitory effect of C1P on acid sphingomyelinase, but the prosurvival effect of C1P was independent of this action.  相似文献   

4.
Chronic hyperaldosteronism has been associated with an increased cancer risk. We recently showed that aldosterone causes an increase in cell oxidants, DNA damage, and NF-κB activation. This study investigated the mechanisms underlying aldosterone-induced increase in cell oxidants in kidney tubule cells. Aldosterone caused an increase in both reactive oxygen and reactive nitrogen (RNS) species. The involvement of the activation of NADPH oxidase in the increase in cellular oxidants was demonstrated by the inhibitory action of the NADPH oxidase inhibitors DPI, apocynin, and VAS2870 and by the migration of the p47 subunit to the membrane. NADPH oxidase activation occurred as a consequence of an increase in cellular calcium levels and was mediated by protein kinase C. The prevention of RNS increase by BAPTA-AM, W-7, and L-NAME indicates a calcium-calmodulin activation of NOS. A similar pattern of effects of the NADPH oxidase and NOS inhibitors was observed for aldosterone-induced DNA damage and NF-κB activation, both central to the pathogenesis of chronic aldosteronism. In summary, this paper demonstrates that aldosterone, via the mineralocorticoid receptor, causes an increase in kidney cell oxidants, DNA damage, and NF-κB activation through a calcium-mediated activation of NADPH oxidase and NOS. Therapies targeting calcium, NOS, and NADPH oxidase could prevent the adverse effects of hyperaldosteronism on kidney function as well as its potential oncogenic action.  相似文献   

5.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

6.
2-Methyl-1,4-naphthoquinone (menadione or vitamin K3; EPO) and K3-2,3-epoxide (EPO1), but not vitamin K3-3-OH (EPO2), exhibited cytotoxicity that caused DNA fragmentation and chromatin condensation in U87 and C6 cells. EPO1 showed more-potent cytotoxicity than EPO, and the IC50 values of EPO and EPO1 in U87 cells were 37.5 and 15.7 μM, respectively. Activation of caspase 3 enzyme activity with cleavage of caspase 3 protein was detected in EPO1-treated U87 and C6 cells, and the addition of the caspase 3 peptidyl inhibitor, DEVD-FMK, reduced the cytotoxic effect of EPO1. An increase in the intracellular ROS level by EPO1 was observed in the DCHF-DA analysis, and EPO1-induced apoptosis and caspase 3 protein cleavage were prevented by adding the antioxidant, N-acetyl-cysteine (NAC), with decreased ROS production elicited by EPO1. Activation of ERK and JNK, but not p38, via phosphorylation induction was identified in EPO1- but not EPO- or EPO2-treated U87 and C6 cells, and this was blocked by adding NAC. However, the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125, showed no effect on EPO1-induced cytotoxicity in either cell type. Our findings demonstrate that 2,3-epoxide substitution significantly potentiates the apoptotic effect of vitamin K3 via stimulating ROS production, which may be useful in the chemotherapy of glioblastoma cells.  相似文献   

7.
Li L  Zhang C  Xu D  Schläppi M  Xu ZQ 《Gene》2012,506(1):50-61
EARLI1 is an Arabidopsis gene with pleiotropic effects previously shown to have auxiliary functions in protecting plants against freezing-induced cellular damage and promoting germinability under low-temperature and salinity stresses. Here we determined whether recombinant EARLI1 protein has anti-fungal activity. Recombinant EARLI1 protein lacking its signal peptide was produced in Escherichia coli BL21(DE3) using isopropyl β-d-1-thiogalactopyranoside (IPTG) induction and the prokaryotic expression vector pET28a. Expression of EARLI1 was analyzed by Western blotting and the protein was purified using affinity chromatography. Recombinant EARLI1 protein was applied to fungal cultures of Saccharomyces cerevisiae, Botrytis cinerea and Fusarium oxysporum, and membrane permeability was determined using SYTOX green. Full-length EARLI1 was expressed in S. cerevisiae from the GAL1 promoter using 2% galactose and yeast cell viability was compared to control cells. Our results indicated that application of recombinant EARLI1 protein to B. cinerea and F. oxysporum could inhibit the growth of the necrotrophic fungi. Besides, addition of the recombinant protein to liquid cultures of S. cerevisiae significantly suppressed yeast growth and cell viability by increasing membrane permeability, and in vivo expression of the secreted form of EARLI1 in S. cerevisiae also had a remarkable inhibition effect on the growth of yeast cells.  相似文献   

8.
Neuronal growth inhibitory factor (GIF) is a small cysteine-rich metal binding protein downregulated in Alzheimer's disease. The protein belongs to the superfamily of metallothioneins (MTs) and was classified as MT-3. Although first identified as a brain specific protein, several reports now indicate a substantially broader expression pattern. However, currently available detection methods for MT-3 show low sensitivity in gel electrophoresis and Western blot. We have developed a fast and sensitive method for MT-3 detection in SDS-PAGE (detection limit approximately 10 ng) and Western blot (detection limit approximately 1 ng). The method is based on the chemical modification of cysteine residues with the dye monobromobimane and an improved blotting protocol.  相似文献   

9.
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.  相似文献   

10.
Different individuals possess slightly different genetic information and show genetically-determined differences in several enzyme activities due to genetic variability. Following an integrated approach, we studied the polymorphisms and methylation of sites contained in the 5′ flanking region of the metabolizing enzyme CYP2E1 in correlation to its expression in both tumor and non-neoplastic liver cell lines, since to date little is known about the influence of these (epi)genetic elements in basal conditions and under induction by the specific inductor and a demethylating agent. In treated cells, reduced DNA methylation, assessed both at genomic and gene level, was not consistently associated with the increase of enzyme expression. Interestingly, the Rsa/Pst haplotype differentially influenced CYP2E1 enzyme expression. In addition, regarding the Variable Number of Tandem Repeats polymorphism, cells with A4/A4 genotype showed a greater expression inhibition (ranging from 20% to 30%) compared with others carrying the A2/A2 one, while those cells bringing A2/A3 genotype showed an increase of expression (of 25%, about). Finally, we demonstrated for the first time that the A2 and A3 CYP2E1 alleles play a more important role in the expression of the enzyme, compared with other (epi)genetic factors, since they are binding sites for trans-acting proteins.  相似文献   

11.
Insulin resistance is a fundamental aspect for the etiology of non-insulin dependent diabetes mellitus (NIDDM) and has links with a wide array of secondary disorders including weight gain and obesity. The present study analyzes the effect of Cichorium intybus methanolic (CME) extract on glucose transport and adipocyte differentiation in 3T3-L1 cells by studying the radiolabelled glucose uptake and lipid accumulation assays, respectively. By performing detannification (CME/DT), the role of tannins present in CME on both the activities was evaluated. CME and CME/DT exhibited significant glucose uptake in 3T3-L1 adipocytes with a dose-dependent response. Glucose uptake profile in the presence of PI3K and IRTK inhibitors (Wortmannin and Genistein) substantiates the mechanism used by both the extracts. CME inhibited the differentiation of 3T3-L1 preadipocytes but failed to show glucose uptake in inhibitor treated cells. The activity exhibited by CME/DT is exactly vice versa to CME. Furthermore, the findings from PTP1B inhibition assay, mRNA and protein expression analysis revealed the unique behavior of CME and CME/DT. The duality exhibited by C. intybus through adipogenesis inhibition and PPARgamma up regulation is of interest. Current observation concludes that the activities possessed by C. intybus are highly desirable for the treatment of NIDDM because it reduces blood glucose levels without inducing adipogenesis in 3T3-L1 adipocytes.  相似文献   

12.
A novel fucose-binding lectin, designated SauFBP32, was purified by affinity chromatography on fucose–agarose, from the serum of the gilt head bream Sparus aurata. Electrophoretic mobility of the subunit revealed apparent molecular weights of 35 and 30 kDa under reducing and non-reducing conditions, respectively. Size exclusion analysis suggests that the native lectin is a monomer under the selected experimental conditions. Agglutinating activity towards rabbit erythrocytes was not significantly modified by addition of calcium or EDTA; activity was optimal at 37 °C, retained partial activity by treatment at 70 °C, and was fully inactivated at 90 °C. On western blot analysis, SauFBP showed intense cross-reactivity with antibodies specific for a sea bass (Dicentrarchus labrax) fucose-binding lectin. In addition, the similarity of the N-terminal sequence and a partial coding domain to teleost F-type lectins suggests that SauFBP32 is a member of this emerging family of lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号